

OMEGAnetSM On-Line Service
http://www.omega.com

Internet e-mail
info@omega.com

Servicing North America:
USA: One Omega Drive, Box 4047

Stamford, CT 06907-0047
Tel: (203) 359-1660
e-mail: info@omega.com

FAX: (203) 359-7700

Canada: 976 Berger
Laval (Quebec) H7L 5A1
Tel: (514) 856-6928
e-mail: canada@omega.com

FAX: (514) 856-6886

For immediate technical or application assistance:
USA and Canada: Sales Service: 1-800-826-6342 / 1-800-TC-OMEGASM

Customer Service: 1-800-622-2378 / 1-800-622-BESTSM

Engineering Service: 1-800-872-9436 / 1-800-USA-WHENSM

TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA
Mexico and
Latin America: Tel: (95) 800-TC-OMEGASM

En Espanol: (95) 203-359-7803
FAX: (95) 203-359-7807
e-mail: espanol@omega.com

Servicing Europe:
Benelux: Postbus 8034, 1180 LA Amstelveen, The Netherlands

Tel: (31) 20 6418405
Toll Free in Benelux: 06 0993344
e-mail: nl@omega.com

FAX: (31) 20 6434643

Czech Republic: ul. Rude armady 1868
733 01 Karvina-Hranice
Tel: 420 (69) 6311899
e-mail:czech@omega.com

FAX: 420 (69) 6311114

France: 9, rue Denis Papin, 78190 Trappes
Tel: (33) 130-621-400
Toll Free in France: 0800-4-06342
e-mail: france@omega.com

FAX: (33) 130-699-120

Germany/Austria: Daimlerstrasse 26, D-75392 Deckenpfronn, Germany
Tel: 49 (07056) 3017
Toll Free in Germany: 0130 11 21 66
e-mail: germany@omega.com

FAX: 49 (07056) 8540

United Kingdom: 25 Swannington Road,
Broughton Astley, Leicestershire,
LE9 6TU, England
Tel: 44 (1455) 285520
FAX: 44 (1455) 283912

P.O. Box 7, Omega Drive,
Irlam, Manchester,
M44 5EX, England
Tel: 44 (161) 777-6611
FAX: 44 (161) 777-6622

Toll Free in England: 0800-488-488
e-mail: uk@omega.com

It is the policy of OMEGA to comply with all worldwide safety and EMC/EMI regulations that
apply. OMEGA is constantly pursuing certification of its products to the European New Approach
Directives. OMEGA will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but OMEGA Engineering, Inc. accepts
no liability for any errors it contains, and reserves the right to alter specifications without notice.
WARNING: These products are not designed for use in, and should not be used for, patient connected applications.

WaveBook User’s Manual i

How To Use This Manual
This manual explains the setup and operation of the WaveBook data acquisition system including
WBK option cards and modules. This manual is divided into a table of contents, 12 chapters, and an
appendix. The chapters are briefly described as follows:

Chapter 1 - Getting Started gives an overview of the basic features of a WaveBook system. A “quick
start” section outlines how to start up a simple system. Application programmers are advised on
the use of various software drivers that come with the WaveBook.

Chapter 2 - Installation, Configuration, and Calibration explains in detail how to set up a
WaveBook system including hardware, software, configuration, system testing and calibration.

Chapter 3 - WaveBook Expansion Options describes the various WBK devices that work with the
WaveBook for expansion, signal conditioning, interfacing, and power supply. This chapter
begins by explaining WBK power management and then proceeds to discuss the WBK cards and
modules including block diagrams, setup procedures, operation, and software concerns.

Chapter 4 - Operation Guide explains the system’s theory of operation. Basic concepts of data
acquisition with a WaveBook are explained, including: managing the acquisition process,
initialization and configuration, specifying the scan, processing analog signals and digital I/O,
trigger types and capabilities, and data transfer. Note: many of the operations are explained
using software commands from the standard Application Programming Interface (API).

Chapter 5 - Using WaveView explains the ready-to-use software that is included with your system.
This chapter shows you how to install and configure the software to meet your system
requirements. Numerous figures show screen shots related to all aspects of system operation.

 Programmer’s Note: Chapters 6 to 12 are for use by programmers; if you are using WaveView or
another ready-to-use program, you can skip these chapters. The comparative features of the standard
and enhanced APIs are described in the last section of chapter 1. If using the standard API, read the
appropriate language chapter (6 to 9) and chapter 10. If using the enhanced API, read chapters 11 and
12. Chapter 4 explains system operation in terms of standard API commands.

Chapter 6 - Using WaveBook/512 with C explains how to program basic data acquisition tasks with
sample programs in C using the standard API.

Chapter 7 - Using WaveBook/512 with QuickBASIC explains how to program basic data acquisition
tasks with sample programs in QuickBASIC using the standard API.

Chapter 8 - Using WaveBook/512 with Turbo Pascal explains how to program basic data acquisition
tasks with sample programs in Turbo Pascal using the standard API.

Chapter 9 - Using WaveBook/512 with VB Subroutines Support explains how to program basic data
acquisition tasks with sample programs in Visual Basic using the standard API.

Chapter 10 - Command Reference (Standard API) explains all wbk…commands and their related
parameters.

Chapter 11 - Enhanced API Programming Models (WaveBook) describes the fundamental building
blocks for data acquisition software using the enhanced API. These programming blocks can
then be arranged and filled with your parameters to make your system do as you please. Program
excerpts illustrate the basic concepts and can often (with modification) be used in your code.

Chapter 12 - WaveBook Command Reference (Enhanced API) explains all the daq…commands
and parameters that pertain to WaveBook.

Appendix: Accessories and Specifications includes a list of available accessories and the physical
and performance specifications for the WaveBook/512 and related WBKs.

CAUTIONCAUTION
Using this equipment in ways other than described in this manual can cause
personal injury or equipment damage. Before setting up and using your equipment,
you should read all documentation that covers your system. Pay special attention to
cautions and warnings formatted like this one.

ii WaveBook User’s Manual

Table of Contents

1 Getting Started
General Description ...1-1

Front Panel of the WaveBook/512...1-1
Rear Panel of the WaveBook/512..1-1
System Features ...1-1

Quick Start ...1-2
PC Connection...1-2
Signal Connections ..1-3
Power Connections ..1-3
Software Installation ..1-3
Testing the System...1-4
WaveView Overview...1-4

Driver Options (for programmers only) ...1-5
Standard API ...1-5
Enhanced API ..1-6
Language Support ...1-6

2 Installation, Configuration, and Calibration
Inspection...2-1
Hardware Installation ...2-1

Connecting to Desktop PCs ...2-1
Standard Parallel-Port Connection..2-1
High-Speed Parallel-Port (WBK21) Connection ..2-1
Connecting to Laptop PCs ..2-2
Standard Parallel-Port Connection..2-2
PCMCIA Card (WBK20) Connection ..2-2

Analog-Signal Connections and Proper Grounding...2-2
Digital I/O Connection ..2-3
Optional Printer Connection..2-3

WaveBook Software Installation..2-4
Making a Backup Copy ...2-4
Adding WaveBook Reset to AUTOEXEC.BAT..2-4
Installation Under Windows 3.1 ..2-4

Using WBKTest..2-5
Installation Under Windows 95 and Windows NT ..2-5
WaveBook Configuration Under Windows 95/NT..2-7

Resource Tests ..2-8
Performance Tests...2-9

Connection Troubleshooting (Windows 95/NT)..2-9
Calibration..2-10

Manual Calibration...2-10
WaveCal ...2-10

Using WaveCal ...2-11
Performing System Calibration...2-12

3 Wavebook Expansion Options
Overview..3-1
Power Requirements ..3-1

Power Connector Pinout..3-2
DBK30A Rechargeable Battery Module ..3-3

Description ..3-3
Hardware Setup ...3-4

Configuration..3-4
Connection..3-4

Connections for the DBK31 Mode ..3-4
Charging the Battery Module...3-5
Using the Battery Module While Charging ...3-5
DBK30A - Specifications ..3-5

WBK10 - Expansion Module...3-6
Description ..3-6

WaveBook User’s Manual iii

WBK10 Front Panel..3-6
WBK10 Rear Panel ...3-7

Hardware Setup..3-7
Configuration ..3-7
WBK10 Cabling..3-7

Software Setup in WaveView ..3-9
WBK10 - Specifications ..3-9

WBK11 - Simultaneous Sample & Hold Card ...3-10
Description...3-10
WBK11 Hardware Setup..3-10
WBK11 - Specifications ..3-11

WBK12/13 Programmable Low-Pass Filter Cards ...3-12
Description...3-12
Hardware Setup..3-13

Configuration ..3-13
Connection ..3-13

Software Setup in WaveView ..3-13
Software Function ..3-13
WBK12/13 - Specifications ...3-14

WBK14 Dynamic Signal Input Module ...3-15
Introduction..3-15
Hardware Description ..3-15

Current Source ..3-15
High-Pass Filter (HPF)..3-15
Programmable Gain Amplifier (PGA)...3-16
Programmable Low-Pass Filter Phase Equalizer (PLPPE)3-16
Programmable Low-Pass Anti-Aliasing Filter (PLPAF).......................................3-16
Simultaneous Sample and Hold ..3-16
Excitation Source ..3-16
Power ..3-16
Calibrating the WBK14...3-16

Hardware Setup..3-17
Configuration ..3-17
Connection ..3-17

Software Setup in WaveView ..3-17
Software Function ..3-18
Accelerometer Tutorial ..3-18

Accelerometer Specification Parameters ...3-19
Electrical Grounding ...3-20
Cable Driving..3-20

WBK14 - Specifications ..3-21
WBK15 5B Isolated Signal-Conditioning Module..3-22

Description...3-22
Hardware Setup..3-22

Safety Concerns ..3-23
Power ..3-23
Configuration ..3-23
5B Module Insertion/Removal ..3-24
Signal Connection ...3-25

Software Setup in WaveView ..3-26
Software Function ..3-26
WBK15 - Specifications ..3-26

WBK20 - PCMCIA/EPP Interface Card ..3-27
WBK20 - Specifications ..3-27

WBK21 - ISA/EPP Interface Card ...3-27
WBK21 - Specifications ..3-27

WBK61 & WBK62 High-Voltage Adapters ..3-28
Hardware Setup..3-28
Software Setup in WaveView ..3-30
Software Function ..3-30
WBK61/62 - Specifications ..3-30

iv WaveBook User’s Manual

4 Operation Guide
System Overview ...4-1
The Acquisition Process...4-3

Initializing the WaveBook ...4-3
One-Step Acquisitions ...4-4
Configuring an Acquisition ...4-4

Channel Numbering..4-4
Specifying the Scan...4-4
Specifying the Trigger Source ..4-4
Specifying the Number of Scans...4-4
Specifying the Scan Rate ..4-5

Starting the Acquisition ...4-5
Transferring Results...4-5
Stopping the Acquisition ...4-6
Shutting Down the WaveBook ..4-6

Operation Details ...4-6
Analog Signal Processing ..4-6
Digital I/O Processing..4-6
Acquisition Composition ...4-8

Acquisition Mode and the Number of Scans ..4-8
Scan Composition...4-9
Scan Period ...4-9

Triggering Capabilities ..4-10
Low-latency (Hardware) Triggering ...4-10
DSP-Based, Multi-Channel Triggering...4-11
Eight Trigger Types ..4-12
Trigger Latency and Jitter ...4-14

Data Packing..4-15
Packed-Data Format..4-15

Data Transfer ...4-16
Time-outs..4-16
Buffer Size ..4-16
Overlapped Execution...4-18
Foreground-Linear Transfers ..4-19
Foreground-Cycle Transfers ...4-19
Background-Linear Transfers ...4-20
Background-Cycle Transfers...4-20
Direct-to-Disk Transfers ...4-21

5 Using WaveView
Application Startup ..5-1

Loading WaveView ...5-1
Starting WaveView..5-1

Simulated WaveBook ...5-1
WaveBook Attached ...5-2

WaveView Main Components ...5-2
Sample Acquisition Using WaveView ...5-4
WaveView Configuration Menu Items & Buttons ...5-5

File...5-5
Edit ..5-5
Window ...5-6
System ...5-6

WaveView Configuration Screen Components..5-7
Input Channel Configuration ...5-7
Scan and Trigger Configuration...5-9

Scan Count..5-9
Scan Rate ..5-9
Trigger ..5-10

WaveView Scope Menu Items & Buttons..5-12
File...5-12
Acquire ..5-13
Charts...5-13
Options ..5-14

WaveBook User’s Manual v

Window..5-14
WaveView Scope Display ..5-15
WaveView Direct-To-Disk Menu Items & Buttons ...5-16

File ...5-16
Acquire...5-16
Window..5-17

WaveView Direct-to-Disk Data Destination Box...5-17
Using PostView..5-18

PostView Timebase..5-18
PostView Menu Items..5-18

File ..5-18
Number of Charts ..5-18
Go To ..5-18
Options..5-18
Help...5-19

PostView Display ..5-19

6 Using WaveBook/512 With C
Borland C for DOS ..6-1
Microsoft C for DOS..6-1
Borland C for Windows ...6-1
Microsoft C for Windows ..6-2

Initializing WaveBook Communications..6-2
Error Handling..6-2
One-Step Analog Input...6-3
Low-Level Analog Input ..6-4
Accessing the High-Speed Digital Input Port...6-5
Background Processing of Analog Input ..6-6
Complex Triggering ...6-7
Pre- and Post-Trigger Acquisitions ..6-8
Buffer Management ..6-9
Direct-to-Disk...6-11
Sample Programs..6-13

7 Using WaveBook/512 With QuickBASIC
Using Multiple Quick Libraries with QuickBASIC..7-1
Simple Analog Input...7-1
Low-Level Analog Input ..7-3
Accessing the High-Speed Digital Input Port...7-4
Background Processing of Analog Input ..7-6
Complex Triggering ...7-7
Pre- and Post-Trigger Acquisitions ..7-9
Buffer Management ..7-11
Sample Programs..7-13

8 Using WaveBook/512 With Turbo Pascal
Simple Analog Input...8-1
Low-Level Analog Input ..8-2
Accessing the High-Speed Digital Input Port...8-4
Background Processing of Analog Input ..8-6
Complex Triggering ...8-7
Pre- and Post-Trigger Acquisitions ..8-9
Buffer Management ..8-11
Sample Programs..8-13

9 Using WaveBook/512 With VB Subroutines Support
Accessing WaveBook from a Windows Program...9-1
Accessing WaveBook from a Visual Basic Program..9-1
Simple Analog Input...9-1
Low-Level Analog Input ..9-3
Accessing the High-Speed Digital Input Port...9-4

vi WaveBook User’s Manual

Background Processing of Analog Input..9-5
Complex Triggering ...9-7
Pre- and Post-Trigger Acquisitions ..9-8
Buffer Management..9-10
Direct-to-Disk ..9-12
Sample Programs ...9-14

10 Command Reference (Standard API)
Overview..10-1
Commands in Alphabetical Order ..10-2
API Reference Tables ...10-24

11 Enhanced API Programming Models (WaveBook)
Overview..11-1
Data Acquisition Environment...11-1

Application Programming Interface...11-1
Enhanced vs Standard API ..11-1
Hardware Capabilities and Constraints..11-1
Signal Environment ...11-2

Basic Models..11-2
Initialization and Error Handling...11-3
Foreground Acquisition with One-Step Commands ..11-5
Counted Acquisitions Using Linear Buffers ..11-7
Indefinite Acquisition, Direct-To-Disk Using Circular Buffers...11-9
Multiple Hardware Scans, Software Triggering...11-12
Background Acquisition ..11-14
Complex Triggering...11-16
Data Packing and Rotating ..11-18
Double Buffering ...11-20
Direct-To-Disk Transfers...11-22
Transfers With Driver-Allocated Buffers...11-25

Summary Guide of Selected Enhanced API Functions ..11-27

12 WaveBook Command Reference (Enhanced API)
Overview..12-1
Commands in Alphabetical Order ..12-2
API Reference Tables...12-38

Appendix: Accessories and Specifications
Available Accessories ... A-1
Specifications .. A-1

WaveBook/512 - Specifications ... A-2
DBK30A - Specifications ... A-2
WBK10 - Specifications ... A-3
WBK11 - Specifications ... A-3
WBK12/13 - Specifications .. A-3
WBK14 - Specifications ... A-4
WBK15 - Specifications ... A-4
WBK20 - Specifications ... A-5
WBK21 - Specifications ... A-5
WBK61/62 - Specifications .. A-5

Getting Started 1

WaveBook User’s Manual 1-1

This short introductory chapter:
• Describes the WaveBook/512 controls and connectors
• Describes the system’s basic features
• Offers guidelines for a “quick start” including setup and operation
• Explains software driver options for programmers

General Description

Front Panel of the WaveBook/512

WaveBook/512 Front Panel Layout

The front panel of the WaveBook/512 has the following components (left to right):
• 1 Binding post for ANALOG COMMON reference
• 8 BNC connectors for analog inputs (analog channel 1 is also the low-latency analog trigger)
• 1 D-25F for digital I/O, including trigger input
• 3 Status LEDs (ACTIVE, READY, POWER)

Rear Panel of the WaveBook/512

WaveBook/512 Rear Panel Layout

The rear panel of the WaveBook/512 has the following components (left to right):
• POWER switch (0-off; 1-on)
• 2 circular 5-pin DIN connectors for POWER IN and POWER OUT (pass-through)
• 1 DB25F for TO PARALLEL PRINTER (pass-through)
• 1 DB25M for LPT/EPP host (TO COMPUTER) connection
• 1 HD-15F EXPANSION CONTROL output
• 1 BNC connector for analog input EXPANSION SIGNAL IN

System Features
The WaveBook/512 is a DSP-based, 12-bit, 1 million sample-per-second portable data acquisition
system for notebook and desktop PCs. The 8-channel instrument is designed for applications that
require high resolution and/or high-speed signal capture, such as engine strain testing, multi-channel
acoustical testing, mechanical integrity testing, and vibration/shock/strain testing.

Specific features include the following:
• Expansion Options. Using 8-channel expansion chassis (the WBK10) allows system expansion

up to 72 analog channels. Each 8-channel chassis may be equipped with the field-installable
WBK11 simultaneous-sample-and-hold card which minimizes inter-channel skew and adds
additional, higher-sensitivity gain ranges. Various WBK option cards for a variety of applications
are described in chapter 3.

• Power Options. The WaveBook can be powered from the included AC adapter or a 10 to 30
VDC source such as a car battery or the DBK30A rechargeable-battery module. This flexibility
for input power makes the WaveBook ideal for portable, field, and/or bench-top applications.

Getting Started Chapter 1

1-2 WaveBook User’s Manual

• Easy PC Connection. The WaveBook connects to a notebook PC via the enhanced parallel port
(EPP) or an optional PCMCIA interface (WBK20). The WaveBook may also be connected to a
desktop PC via the EPP port or an optional ISA plug-in card interface (WBK21). Standard non-
EPP ports may also be used but at reduced throughput (also, a printer can be connected in pass-
through mode).

• Digital Signal Processing (DSP). The DSP-based design allows you to define an arbitrary scan
sequence of channels and associated gains across all of its channels. The DSP also provides real-
time digital calibration on a per-sample basis, eliminating the need for manual adjustments and
allowing expansion of signal-capacity and installation of options without recalibration. The
WaveBook permits a programmable trigger based on the signal levels of any combination of
analog channels.

• Programmable Scan Sequencing. A 128-location scan sequencer allows you to program the
analog channel scan sequence, the associated unipolar/bipolar A/D range, and the input amplifier
gain. The unit performs 1 Msample/s scanning and gain switching over both its built-in and
expansion channels (up to its limit of 72). The WaveBook/512 can also be switched from
unipolar to bipolar operation on a per-channel basis at the full sampling rate (every 1 µs). The
WaveBook/512 takes readings in scans of up to 128 individual readings. Within a scan, readings
are taken at a fixed 1 µs rate. The time between scans is adjustable to provide varying sample
rates. The start of each scan is delayed from the start of the previous scan by a programmable
interval (settable in 0.05 µs (50 ns) increments, subject to the 1-µs minimum interval between
samples and a 100-s maximum interval).

• Multi-channel triggering. Multi-channel triggering allows you to program any combination of
analog input channels including expansion channels as the analog trigger. You can also program
trigger-level slope and hysteresis for each trigger channel and then combine multiple trigger
channels in a logical "and" or "or" function to determine whether an actual trigger condition has
occurred. The DSP initiates sampling of the trigger channels, calibrates incoming data, compares
readings to pre-programmed trigger states, and then determines whether the trigger conditions are
satisfied. All these operations occur in 2 µs plus the time required to sample each trigger channel
(1 µs/channel).

• Single-channel triggering. The WaveBook/512 is also capable of low-latency single-channel
triggering using either analog input channel 1 or a TTL-trigger input. The analog trigger level is
programmable with 12-bit resolution, and both trigger inputs may be set for either rising- or
falling-edge detection.

• Pre- and post-trigger readings. The WaveBook/512 can acquire readings while waiting for a
trigger and after the trigger has been detected. The pre-trigger readings may be sampled at a
different rate than the post-trigger readings. At the end of a scan of readings or the end of a series
of scans, the system will return to its original scan rate and may be re-armed for the next trigger
event.

• Digital Inputs. The unit has the ability to sample 8 TTL-level digital inputs as part of the user-
defined scan sequence and can acquire the state of all 8 digital input lines in 1 µs. This allows
digital data to be time-correlated with the acquired analog data. The WaveBook can also write to
the digital I/O port under program control. Digital inputs are readable at up to 1 Mbyte/s.

• Analog Inputs. BNC connectors provide convenient signal termination and ensure signal
integrity. To prevent inadvertent ground loops, these connectors isolate the chassis from analog
signals, commons, and shields.

Quick Start
These Quick Start guidelines can be used for very simple systems or as a preview for more complex
systems as described in the next chapter (Installation and Configuration). Note: Most users will need
to refer to other chapters for specific details on setup and operation.

PC Connection
The WaveBook/512 communicates with a laptop or desktop computer through the parallel printer port
or a port adapter (for the WBK20 or the WBK21, refer to their separately-supplied instructions).

Chapter 1 Getting Started

WaveBook User’s Manual 1-3

Connect the supplied cable to the computer's parallel port or adapter and then to the WaveBook port
marked "TO COMPUTER". Optionally (for printer pass-through capability), connect your printer's
cable to the port marked "TO PARALLEL PRINTER".

PC-to-WaveBook/512 Connection

Signal Connections
The front panel has 8 BNC connectors for analog inputs, a binding post for analog common, and one
D-25F connector for Digital I/O. Channel 1 is also used for low-latency analog triggering.

The center pin of each BNC connector is the high or positive input, and the outer shell is the low or
negative input. The inputs are differential: the measured voltage is the difference between the high and
low signal levels. For proper operation each analog input signal (high or low) must be within ±11 volts
of the WaveBook's analog common level. An analog common connection is provided by the front
panel binding post. If the analog signal source is floating (does not connect to a common ground) with
respect to the WaveBook, then it may be necessary to connect the analog signal source to the analog
ground binding post to keep the analog signals within the ±11 volt common-mode range. Analog
common is at the same potential as the PC's digital ground. The analog channels are not isolated from
the PC. In contrast, the WaveBook's power supply input is isolated from the rest of the WaveBook,
including the analog ground and the PC’s digital ground. Note: grounding is explained more fully in
chapter 2.

Power Connections
The WaveBook can be powered from the supplied wall-mount AC-to-DC converter or from the
optional DBK30A battery module. The wall-mount converter (TR-27 or TR-27E for European
applications) plugs into a standard wall outlet; its other end plugs into the circular DIN5 receptacle on
the WaveBook's rear panel (the DIN5 pinout can be found under Power Requirements in chapter 3). If
using the battery module, refer to the DBK30A section of chapter 3.

Power Connection

Software Installation
The WaveBook system includes a Windows program called WaveView that provides an easy way to
collect data from the WaveBook/512. To install WaveView, insert software disk 1 into your floppy
disk drive, and choose RUN from the Windows Program Manager FILE menu and type A(or
B):\SETUP.EXE. Follow the on-screen prompts; setup is fairly intuitive whether using the 16-bit
WaveView with Windows 3.1 or the 32-bit WaveView with Windows 95/NT (refer to chapter 5 if
necessary).

The user should add the following line to the autoexec.bat file on the host PC:
c:\wavebook\wbkreset. This command performs a reset of the WaveBook whenever the PC is
restarted and is especially important if a printer is attached through the WaveBook/512.

Getting Started Chapter 1

1-4 WaveBook User’s Manual

Testing the System
After software installation, the hardware must be tested to verify communication between the PC and
the WaveBook. The 16-bit software includes WBKTest.exe to test hardware performance (the 32-bit
software has similar performance tests). This testing verifies the PC's parallel port (or WBK20/21
adapter) capabilities and then estimates the port's maximum performance, using both standard and
enhanced protocols. Testing also verifies that the WaveBook is properly attached and ready to operate.

To run the program, move to the WaveBook directory and type WBKTest. The program will perform
several tests on the PC and WaveBook and then print out the results. Once WBKTest successfully
communicates with the WaveBook/512, WaveView may be used to collect readings.

WaveView Overview
Note: Chapter 5 explains WaveView in detail; the following is intended only as a “quick start”.

WaveView is a Windows application for operating the WaveBook system. No programming is
required to use WaveView. It allows users to acquire data for immediate viewing or for storage to the
PC's hard disk.

Start WaveView by (double)clicking on its program icon to display the main window (see figure).
WaveView interrogates the hardware after it starts up to see what options and expansion modules are
actually connected to the WaveBook. The total number of channels displayed on the configuration
menu corresponds to the number of channels connected.

Menu Bar

Tool Bar
(placing cursor on
icon displays label)

Input Channel
Configuration
Spreadsheet

Configure Channels
To begin acquiring data with WaveView, turn on only those channels to which you have signals
connected. This can be done by clicking once in the On column next to the desired channel number
and selecting "YES" or "NO" from the listbox above the spreadsheet. Turning a channel on will cause
the channel to be sampled during an acquisition.

Select the appropriate parameters for each channel. Note that the spreadsheet entries can be changed
for all channels by clicking once on the column label at the top of the spreadsheet to highlight the
column and then making the appropriate entry within the selection box that appears as needed above
the spreadsheet.

• Gain and offset are selected by choosing an entry from the Range entry box.
• A name may be assigned to each channel by editing the Label box for that channel.
• Volts or milliVolts for each channel may be selected within the Units column.

Chapter 1 Getting Started

WaveBook User’s Manual 1-5

Configure Scan and Trigger
Next, move to the Scan Count selection box and enter values for Pre-trigger and/or Post-trigger, as
desired. The timebase for the acquisition can be set to Frequency or Period within the Timebase
selection box. The desired trigger source and parameters are selected in the Trigger selection box.

Collect Data
Now you are ready to read data from the WaveBook/512. Select the Scope option from the Window
menu. To start performing acquisitions, click on the One Shot button, or the Continuous button, then
click the Arm button. Additional channels may be viewed (up to 8) simultaneously by changing the
entry in the Number of Charts menu. The next figure shows the WaveView Scope screen. Two
channels are displayed in this example (up to 8 channels can be displayed at a time).

Menu Bar

Tool Bar

Scope Mode
Display

Store Data
Collected data may be stored to disk by clicking on the Disk button (first icon on left).

Driver Options (for programmers only)
The install disks include several “drivers” to accommodate various programming environments. This
section is intended to help you decide which API and programming language to use in developing your
application.

WaveBook applications can be written to either the Standard WaveBook API or to the Enhanced Daq*
API. The Standard API has the same format (only written to 32-bit mode) as the Windows 3.1 version
of the driver. Standard API functions have the wbk… prefix. The Enhanced API is a new format
which can be generically used with the WaveBook, DaqBook, DaqBoard, Daq PC-Card and
TempBook product lines. Enhanced API functions share the daq… prefix. Generally,

• If starting with an existing WaveBook Application written to Windows 3.1, the quickest port is to
use or re-write code to the Standard API.

• If writing a new application, it is best to write code to the Enhanced API due to its improved
performance and enhanced feature set (see following).

Getting Started Chapter 1

1-6 WaveBook User’s Manual

Standard API (wbk…)
The standard API was originally written for the WaveBook’s Windows 3.1 driver. However, it can be
used under Windows 95 in 16- or 32-bit mode or under Windows NT in 32-bit mode. The standard
API is the only API option available for Windows 3.1 or DOS applications. Use the Standard API:

• When developing a new or existing DOS application
• When developing a new or existing Windows 3.1 application
• When a quick port of an existing 16-bit mode (Windows 3.1) application to 32-bit mode

(Windows95/NT) is required

Enhanced API (daq…)
The Enhanced API for 32-bit systems has several features that are not present in the standard API:

• Multi-device - can concurrently handle up to 4 devices (including WaveBooks, Daq* products,
and/or TempBooks)

• Larger buffer - can handle up to 2 billion samples at a time
• Enhanced acquisition and trigger modes
• Direct-to-disk capabilities
• Wait-on-event features
• Uses multi-tasking advantages of Windows 95/NT

Because of these new features and other improvements, we recommend you use the Enhanced API
whenever feasible. Use the Enhanced API:

• When developing new or existing Windows 95 applications
• When developing new or existing Windows NT applications
• When porting an existing Standard API application to 32-bit mode to take advantage of the

Enhanced API features

Language Support
The following table shows language support for the standard and enhanced API drivers.

Standard API (16-bit) Supported Languages Enhanced API (or 32-bit Standard) Supported Languages
C/C++
 Microsoft Visual C++
 Borland C++ (v4.0 and greater)

C/C++
 Microsoft Visual C++
 Borland C++ (v4.0 and greater)

BASIC
 Microsoft Visual Basic (v4.0 and greater)
 QuickBASIC

BASIC
 Microsoft Visual Basic (v4.0 and greater)

Pascal
 Turbo Pascal

Delphi
 Borland Delphi (v2.0)

Installation, Configuration, and Calibration 2

WaveBook User’s Manual 2-1

This chapter walks you through several important steps in properly setting up your WaveBook system.
Although particular systems and environments may vary widely, following these guidelines will ensure
a successful startup. The generic installation/setup procedure includes:

• Hardware installation—connecting all system devices and power
• Software installation—loading system software for your requirements and PC’s operating system
• Configuration—setting up various software parameters to achieve the best performance for your

requirements
• Testing and calibration—verifying performance of communication among connected devices and

ensuring accuracy of the data.

Inspection
The WaveBook/512 system was carefully inspected prior to shipment. When you receive your system,
carefully unpack all items from the shipping carton and check for any obvious signs of physical damage
which may have occurred during shipment. Immediately report any damage to the shipping agent.
Retain all shipping materials in case you must return the unit to the factory.

Hardware Installation
PC connection. The WaveBook/512 connects to a laptop/notebook or desktop PC through the parallel
printer port or through a WBK20 or WBK21 high-speed adapter. A parallel printer may be used with
the WaveBook by connecting it to the WaveBook's printer pass-through connector.

Signal connection. Analog signals are connected with standard BNC connectors. Digital signals are
connected to the DB25F connector.

Power connection. The WaveBook is powered by the supplied wall-mounted adapter. The unit can
also be powered from a user-supplied 10 to 30 VDC source (such as a car battery) by using a standard
5-pin DIN connector (for connector pinout, see Power Requirements in chapter 3).

Connecting to Desktop PCs
The WaveBook may be connected to standard desktop PCs either through the PC's standard parallel
port or through the optional WBK21 high-speed parallel port.

Standard Parallel-Port Connection
Follow these steps to connect to a desktop PC through the standard parallel port:

1. Power down the PC.
2. If a parallel printer connects to the PC, disconnect the printer cable from the parallel port.
3. Plug the WaveBook's cable (CA-140) into the computer's parallel port. The parallel port

connector is a 25-pin socket connector.
4. Connect the other end of the cable to the WaveBook port marked "TO COMPUTER".

High-Speed Parallel-Port (WBK21) Connection
For maximum performance the high-speed WBK21 may be used.

1. Power down the PC.
2. Configure the WBK21 according to the instructions provided in its manual. Remember to record

the WBK21 address and interrupt settings for future reference.
3. Open the PC and insert the WBK21 into an available 16-bit slot. The WBK21 will not operate

correctly in an 8-bit slot.
4. Replace cover on the PC.
5. Plug the WaveBook's cable (CA-140) into the WBK21 parallel port. The parallel port connector

is a 25-pin socket connector.
6. Connect the other end of the cable to the WaveBook port marked "TO COMPUTER".

Installation, Configuration, and Calibration Chapter 2

2-2 WaveBook User’s Manual

Connecting to Laptop PCs
The WaveBook may be connected to laptop PCs either through the PC's standard parallel port or
through the optional WBK20 PCMCIA high-speed parallel port.

Standard Parallel-Port Connection
Following these steps to connect to a laptop PC through the standard parallel port:

1. Power down the PC.
2. If a parallel printer is connected to the PC, disconnect the printer cable from the parallel

port.
3. Plug the WaveBook's cable (CA-140) into the computer's parallel port. The parallel port

connector is a 25-pin socket connector.
4. Connect the other end of the cable to the WaveBook port marked "TO COMPUTER".

PCMCIA Card (WBK20) Connection
For maximum performance the high-speed WBK20 PCMCIA card may be used.

1. Insert the WBK20 into a free Type II PCMCIA socket.
2. Insert the provided cable into the end of the PCMCIA card.
3. Connect the other end of the cable to the WaveBook port marked "TO COMPUTER".
4. Follow the instructions provided with the WBK20 to load the required software drivers.

Remember to record the WBK20 address and interrupt settings for future reference.

Analog-Signal Connections and Proper Grounding
Both the WaveBook/512 and the WBK10 each have 9 analog input connections: 8 BNC connectors for
analog input signals, and 1 binding post for analog common.

Each BNC analog-signal connection carries a differential signal, the measured analog voltage is the
difference between the center (positive) voltage and the shield (negative) voltage. The center and
shield are each connected to analog ground through a 5 MΩ resistor, giving a 10 MΩ differential input
impedance. (Signals from many transducer types will need to be conditioned for voltage and
impedance levels to achieve WaveBook's speed and accuracy; e.g., via WBK signal-conditioning cards
and modules.)

The analog ground of the WaveBook/512 connects directly to the digital ground which connects to the
computer's ground through the parallel-port cable. If the computer is a desktop computer, then this
ground will be at the ground of the AC power line. If the computer is a laptop computer, its ground
will be at the same potential as the WaveBook's analog ground but may have no relation to other
grounds.

The analog ground of the WBK10 is not directly connected to digital ground. A pair of Shottkey
diodes keeps the analog ground within a few tenths of a volt of the digital ground.

The WaveBook and WBK10 both have isolated power supplies. There is no connection between their
power inputs and the analog ground.

Chapter 2 Installation, Configuration, and Calibration

WaveBook User’s Manual 2-3

In order for the WaveBook or WBK10 to correctly measure the input signals, each signal must be
within ±11 volts of the analog signal level. Depending on your application, this may be achieved in
one of several ways:

• Common Grounds: If your computer and signal source are grounded by the AC line, then your
analog signals will already be referenced to analog ground and should be within the ±11 volt
common-mode range. Note: laptop computers are usually not grounded by the AC line, even
when plugged into their AC power adapters.

• Floating Grounds: If both the computer and the signal source are battery operated or otherwise
isolated, then the internal 5 MΩ resistors may provide enough of a ground connection to keep the
analog inputs within the common-mode range. If the computer or the analog signal source is AC
line powered, then the parasitic capacitance will probably drive the signals out of the common-
mode range and require a direct ground connection.

• Direct Ground Connection: Unless both the computer and the signal source are already
connected to a common ground such as the AC power line, a direct ground connection is
recommended between an appropriate reference point on the signal source and the analog ground
binding post.

• If the signal source is differential, then it may already have a reference ground that should
be connected to the binding post. If it does not, then one of the differential signals should
be connected to the binding post with a 100 KΩ or larger resistor.

• If the signal source is single-ended, then connect its ground to the binding post.

When connecting several signal sources to the binding post, it is important to make sure that the
grounds are all compatible. There should be no circuit paths or ground loops that would tend to force
the ground connections to different potentials.

Digital I/O Connection
The following signals are present on the DB25F high-
speed digital I/O connector (see pinout figure and table):

• 8 Digital I/O Lines
• 5 Address Lines
• Active-low Digital I/O Enable output
• Active-low Digital I/O Read and Write Strobes
• TTL Trigger Input
• +15 V, -15 V power, 50 mA max. (each supply)
• 2 +5 V power, 250 mA max. (total)
• 3 Digital Grounds

To sample just 8 digital input signals, connect them
directly to the digital I/O data lines. D7 is the most
significant bit, and D0 is the least. The address lines, the
read and write strobes, and enable signal may all be left
disconnected.

To use the digital I/O address lines to select from up to 32
input bytes or to use the digital I/O port for output, see
chapter 4.

Optional Printer Connection
WaveBook/512 allows for LPT pass-through for printer operation while the WaveBook is connected.
When using a printer in the system configuration, attach the original printer cable (plug DB25) into the
connector marked "TO PRINTER" on the WaveBook/512.

Digital I/O Connector Signals
D7 - 0 Digital I/O data lines
A4 - 0 Digital I/O address lines
EN- Active-low digital I/O enable
RD- Active-low read strobe
WR- Active-low write strobe
TTLTRIG TTL trigger input
+5 VDC 250 mA maximum
+15,-15 VDC 50 mA maximum

Installation, Configuration, and Calibration Chapter 2

2-4 WaveBook User’s Manual

WaveBook Software Installation
The WaveBook/512 software installation consists of two steps: making a backup copy and installing
the user-selected WaveBook/512 files. The software can be installed under Windows 3.1 or Windows
95/NT. A description of each method follows. Note: any previous installation of the WaveBook/512
drivers should be removed before installing a new version.

Making a Backup Copy
Make a backup copy of the release disks as follows:

1. Boot up the system according to the manufacturer’s instructions.
2. Enter the DOS operating system (if in another operating system, follow diskcopy procedures).
3. Type the command CD\ to go back to your system’s root directory.
4. Place driver disk #1 into drive A (or whatever floppy disk drive you are installing from).
5. Type DISKCOPY A: A: and follow the instructions given by the DISKCOPY command.
6. This process may require swapping the release and backup disks several times.
7. When the disk copy is complete, repeat the process for all disks in the installation set.

Adding WaveBook Reset to AUTOEXEC.BAT
If the host PC is reset during an acquisition, the WaveBook may not be automatically reset along with
it. The WaveBook (and any attached printer) may then not operate correctly. To assure that the
WaveBook is reset correctly, the WaveBook reset program (wbkReset), supplied with the
WaveBook, should be executed as part of the AUTOEXEC.BAT file. Using some type of text editor,
such as Windows "Notepad", add the following line to the AUTOEXEC.BAT file:
c:\wavebook\wbkreset
Note: The path may be different if the software was installed into a directory other than \wavebook.

Installation Under Windows 3.1
The WaveBook Windows Install program copies the user-selected files and creates a Windows
program group and icons.

1. After exiting other programs, begin
installation by putting disk #1 of the
Windows 3.1 set into your floppy disk
drive. From the program manager
choose File/Run to run the
SETUP.EXE file.

2. The Windows Setup dialog box asks
you for a destination directory.

3. From the next dialog box, select the
Typical, Compact, or Custom/Full
installation (see figure). After the
options have been selected, the bottom
of the screen will display the amount of
hard disk space required for the
installation and the amount of disk space
remaining after installation. Make sure
there is room available for installation
before continuing.

4. After installing the files from disk #1,
the program will prompt you to place
the rest of the installation disk set into
the floppy drive. A final message will
display when installation is complete.

Note: To verify proper performance, WBKTest (described in the next section) should be run after
installation under Windows 3.1 (installation under Windows 95/NT has its own hardware test).

Chapter 2 Installation, Configuration, and Calibration

WaveBook User’s Manual 2-5

Using WBKTest
In systems with Windows 3.1,
WBKTest is a utility program that
tests the communication channel
from the computer to the
WaveBook/512. WBKTest is
easy to use. RUN the program,
select your test options, and then
view the results. Besides the
opening screen, 2 other screens
include the test selection screen
and the test summary screen (see
following figures). You should
select the interface test that best
matches your system
configuration. Option 1 should
work with printer ports from all
computers.

Installation Under Windows 95 and Windows NT
This section describes the installation of WaveBook software under the Windows 95 and Windows NT
operating systems. Installation for both Windows 95 and Windows NT are operationally equivalent.
In fact, they use the same installation disk set. The installation program automatically detects which
operating system is running and then proceeds accordingly. Note: The following figures show screens
for a Windows 95 installation; however, identical procedures apply for a Windows NT installation.

Two preliminary steps are to:
• Locate the disk set labeled WaveBook Software for Windows95/NT and make a backup copy of

the disk set before proceeding.
• (If the WaveBook is to be used immediately) Attach the WaveBook to the desired LPT port and

power-on the system before starting the software installation.

Now insert the diskette labeled Disk 1 of the Windows 95/NT set into the floppy drive. Locate the
drive and double-click on the file Setup.Exe. The installation process begins and displays a
Welcome screen with copyright and other information regarding the product. Click Next> to continue
with the installation. Click Cancel to exit without installing the software. Note: If other Windows
programs are running, select Cancel, exit all other programs, and return to the WaveBook installation
when ready.

The next screen (see next figure) allows you to specify the program folder in which to install the
software. A list of current program folders can be used or you can specify a new one. Click Next> to
continue with the installation. Click Cancel to exit without installing the software.

Installation, Configuration, and Calibration Chapter 2

2-6 WaveBook User’s Manual

The next screen displays component installation options. All selected items (indicated by the check-
mark) are installed. By default, all options are selected. To de-select an item, click the corresponding
check box for that item. To select a de-selected item, click the corresponding check box for the item.
The bottom of screen displays the amount of hard disk space required for installation and the amount of
disk space remaining after installation. Make sure adequate memory is available before continuing.
Click Next> to continue with the installation. Click Cancel to exit without installing the software.

The next screen shows the progress of the installation of the software components. As the installation
progresses, you may be asked to periodically insert the next disk into the floppy drive. When
prompted, replace the current disk with the next disk. When the software component installation is
complete, you are given 3 options:

• Exit and perform device configuration (If the WaveBook is to be used immediately, you should
select this configuration option and proceed to the next section).

• Exit and review the readme file for up-to-date information on the current release version.
• Exit completely and return to your operating system.

Chapter 2 Installation, Configuration, and Calibration

WaveBook User’s Manual 2-7

WaveBook Configuration Under Windows 95/NT
This section describes the configuration of WaveBook devices under the Windows 95 and Windows
NT operating systems. A configuration utility is supplied via a control panel applet. The Daq
Configuration applet allows you to add a device, remove a device, or change existing configuration
settings. Daq Configuration also has a built-in test utility to test the device. The test utility provides
feedback on the validity of the current configuration settings as well as providing relevant performance
summaries.

Daq Configuration can be found in the Windows 95/NT
control panel and can be executed any time that it is desirable
to add, remove or change device configuration settings. Daq
Configuration may also be entered during driver installation.
The following description applies to either method.

The Daq Configuration/Device Inventory screen at right will
display all currently configured devices. Displayed devices
are indicated by their name and an identifying icon which
indicates the device type. If no devices are currently
configured, no devices will appear in this field.

The 4 buttons across the bottom of the Daq Configuration
screen are used as follows:

• Properties. Current configuration settings for a device
can be changed by bringing up the corresponding properties screen. To do so, double-click the
device icon or single-click the device and then double-click the Properties button.

• Remove. The Remove button is used to remove a device from the configuration. A device may
be removed if it is no longer installed or if the device’s configuration no longer applies. Note: if a
device is removed, applications may no longer access the device. However, the device can be re-
configured at any time using the Add Device function described below.

• Close. The Close button may be used at any time to exit the Daq Configuration applet.
• Add. The Add Device button is used to add a device

configuration whenever a new device is added to the
system. Failure to perform this step will prevent
applications from properly accessing the device.
Double-clicking the Add Device button will display the
following window (Note: screen shows WaveBook/512
currently selected):

Use the scroll bar to find the WaveBook device type to be
configured. Once found, click the device type (the type
should then appear in the main edit box). Now double-click
the OK button.

The next screen displays the properties for the WaveBook
device with the default configuration settings. Fields include:

• The Device Name field is displayed with the default device name. However, this field can be
changed to any descriptive name as desired. This device name is the name to be used with the
daqOpen function (see enhanced API chapter) to open the device. This name will also be
displayed in the device lists for opening the device in the WaveView, WaveCal, and GageCal
applications.

• The Device Type field should indicate the device type which was initially selected. However, it
can be changed here if necessary.

• The Protocol field is used to set the parallel port protocol for communicating with the
WaveBook. Depending on your system, not all protocols may be available.

Note: IRQ Setting and DMA Setting for the WaveBook are currently not configurable. These fields
are reserved for future use.

Installation, Configuration, and Calibration Chapter 2

2-8 WaveBook User’s Manual

When all fields have been changed to the desired settings, you can click:
• the Apply button to store the configuration.
• the OK button to store the configuration and exit the current property screen.
• the Cancel button to exit the current device configuration property screen without storing any

changes.
• the Test Hardware tab to test the current stored configuration for the device. This selection will

bring up the Test property screen. Note: the next figure displays results from a previously run
test. Initially, the screen will show no test results.

Before testing the WaveBook, make sure the device has been properly installed and powered-on. Make
sure the parallel port cable is firmly in place on both the WaveBook and the proper LPT port in the
computer. Note: Testing the WaveBook device may, in some cases, cause the system to hang. If test
results are not displayed in 30 seconds or the system does not seem to be responding, reboot the
system. Upon power-up, re-enter the Daq Configuration and change the WaveBook configuration
settings to those that work properly.

To test the current stored configuration for the WaveBook device, click the Test button. Test results
should be displayed within a few seconds. The test results have 2 components: Resource Tests and
Performance Tests.

Resource Tests
The resource tests are intended to test system capability for the current device configuration. These
tests are pass/fail. Resource test failure may indicate a lack of availability of the resource or a possible
resource conflict.

• Base Address Test - This test will test the base address for the selected parallel port. Failure of
this test may indicate that the parallel port is not properly configured within the system. See
relevant operating system and computer manufacturer’s documentation to correct the problem.

Chapter 2 Installation, Configuration, and Calibration

WaveBook User’s Manual 2-9

Performance Tests
The performance tests are intended to test various WaveBook functions with the current device
configuration. These tests give quantitative results for each supported functional group. The results
represent maximum rates at which the various operations can be performed. These rates depend on the
selected parallel port protocol and will vary according to port hardware capabilities.

• ADC FIFO Input Speed - This test will test the maximum rate at which data can be transferred
from the WaveBook’s internal ADC FIFO to computer memory through the parallel port. Results
are given in samples/second (sample is 2 bytes in length representing a single A/D count).

Connection Troubleshooting (Windows 95/NT)
If communications cannot be established with the WaveBook or if trying to connect causes the system
to hang or crash, then you should:

• Check that WaveBook’s power LED is ON. If not ON, verify power connection between the
WaveBook and the power source.

• Make sure the LPT cable is firmly attached to the computer’s proper LPT port and to the
WaveBook port labeled “TO COMPUTER”.

• Check that the desired LPT port has the proper resource configurations. The base address and
IRQ level must be properly configured and recognized by the operating system. The parallel port
must be capable of generating interrupts for proper operation. (This information may be obtained
in the Device Manager in the Control Panel of the operating system). More information on this
subject can be found in the readmew.txt file in the current software release.

• Check the BIOS settings for the LPT port. Make sure the BIOS LPT protocol settings are
compatible with the settings selected for the LPT port with the Control Panel applet.

• Make sure the Daq Configuration Applet has been run and the proper LPT port and protocol have
been selected for the device. The Daq Configuration applet can be found in the Control Panel of
the operating system. The Test Hardware function in the control panel applet can be used to
confirm proper communication with the device.

• WINDOWS NT: Make sure the driver has been loaded. The installation will configure the
operating system to automatically load the driver at bootup. However, if there is a problem
communicating with the device, the driver can be loaded manually by using the following start
sequence from a DOS shell: NET START WAVEBK. To unload the driver manually, use the
following sequence: NET STOP WAVEBK.

Installation, Configuration, and Calibration Chapter 2

2-10 WaveBook User’s Manual

Calibration
Calibration of the WaveBook/512 may be performed 2 different ways depending on the application.

• The first method uses factory-generated calibration constants—no manual calibration by the user
is required. The stored constants are used by the WaveView program when the user selects the
Factory Calibration Table option from the System Menu. The calibration constants are stored
onboard the WaveBook/512, WBK10 Expansion Chassis, and WBK11 Simultaneous Sample and
Hold card. When the components are interconnected, the software reads these constants and uses
them to perform a calibration of the components working together as a system. This calibration
method is ideal for applications that require the hardware to be continually reconfigured.

• The second method produces a slightly better calibration of the system as a whole but requires
manual calibration. The procedure produces a calibration of the complete signal path from the
input to the A/D converters. The results of the calibration procedure are stored in the User
Calibration Table option of the WaveView System Menu. The user selects this option to use the
manually derived calibration parameters. Recalibration is necessary whenever anything in the
signal path is changed, such as adding a WBK11 to a WaveBook/512. For this reason, this
calibration method may not be best suited to applications where the hardware configuration
changes frequently.

Manual Calibration
The WaveBook/512 supplies internal 0.000 V and 5.000 V (and 0.5000 V with WBK11) for
calibration. You can calibrate all of the offsets and some of the gains using either the internal voltage
references or user-supplied external voltage references. A user-calibration program (WaveCal) is
provided to allow calibration using just the internal references, a DMM, and the factory-measured gain
ratios, or a calibrator capable of supplying all of the required voltages.

Calibration is carried out by the host computer which sets up the calibration, analyzes the
measurements, determines the correction factors, downloads them to the WaveBook/512 for use during
acquisition, and optionally saves them in the WaveBook/512 EEPROMs. Calibration occurs only
when commanded by host computer software. For best calibration, the software is able to adjust the
calibration constants so that a user-supplied reference within a limited calibration range is measured
accurately.

WaveCal
WaveCal is a Windows-based application for performing manual calibration of the WaveBook/512
system. The program is transferred to the user's PC when the WaveBook/512 installation software is
loaded. A WaveCal icon is generated in the WaveBook/512 program group. Click on the icon to start
the application (see figure of WaveCal main screen). WaveCal uses a 2-point linear approximation
method to calculate calibration Gain and Offset Errors for a given gain and polarity of each channel.

Chapter 2 Installation, Configuration, and Calibration

WaveBook User’s Manual 2-11

Using WaveCal
Upon loading, WaveCal performs a system inventory of all equipment connected to the WaveBook/512
main chassis. For each chassis, the system inventory includes any option cards installed and the date
that the chassis was last calibrated. The chassis, option cards and last known calibration date are
displayed in spreadsheet form along with two other columns: "Calibrate?" and "Concurrent?". Each
spreadsheet column is described below.

Chassis

This column displays the type of chassis found at the specified address. Currently, the valid entries for
this column are WaveBook/512, WBK10 or None. This column is part of the general system inventory
and cannot be changed by the user.

Option

This column displays the type of card (if any) installed on the corresponding chassis. Currently, valid
values for this column include: WBK11, WBK12, WBK13, WBK14, WBK15, WBK61, WBK62, and
None. This column is part of the general system inventory and cannot be changed by the user.

Last Cal

This column displays the date when the system was last calibrated. This date corresponds to the last
date that calibration constants were written to the chassis' internal EEPROM. Therefore executing the
WaveCal program without writing the changes will not change the value of this column for a particular
chassis. This column is part of the general system inventory and cannot be changed by the user.

Calibrate?

This column indicates whether the corresponding chassis should be calibrated. This column is user-
setable by either double-clicking the entry of the desired chassis or by clicking the column header to
select the entire column and then selecting "Calibrate" or "Don't Calibrate" under the "Calibrate This
Chassis?" list box. Initially, all chassis are set to "Don't Calibrate". Only chassis which are present in
the chassis (whose value is other than None) column may be changed to "Calibrate". When "Calibrate"
is selected for a particular chassis, this indicates to WaveCal that the user wishes to calibrate at least
one channel on that particular chassis.

Concurrent?

This column indicates whether all channels on the corresponding chassis should be calibrated
concurrently. Normally, the two-point calibration process will calibrate each channel on a particular
chassis individually. However, WaveCal has the ability to apply the same two-point calibration to all
channels on the specified chassis concurrently. Concurrent calibration can be used to greatly reduce
the calibration time for a particular system; however, concurrent calibration should not be used when
the accuracy for a particular channel within the chassis is questionable subsequent to calibration.
Concurrent calibration may be toggled for a particular chassis by double-clicking the entry
corresponding to that chassis.

After WaveCal has taken the system inventory, check to make sure that all chassis and option cards
connected to the system are properly displayed. You may then select which chassis to calibrate and
whether their channels are to be individually or concurrently calibrated.

Installation, Configuration, and Calibration Chapter 2

2-12 WaveBook User’s Manual

Performing System Calibration
When satisfied with the system inventory and calibration
configuration, the calibration process can be initiated by
clicking the Start Calibration button. A new screen, "System
Calibration", will then be loaded (see figure). This screen
controls the calibration process for each Chassis, Channel,
Gain and Bipolar setting in the system. The fields under
Calibration Parameters indicate the current setting for each of
these parameters. Each of these is defined in detail below.

Chassis

Indicates which chassis is currently scheduled to be calibrated.
Initially, the chassis will be set to "Main" to indicate that the
first chassis to be calibrated is the WaveBook/512 main
chassis.

Channel

Indicates which channel is currently scheduled to be
calibrated. The value of this field will correspond to the
current channel number regardless of the current chassis unless
Concurrent calibration was selected for the current chassis. In
this case, the value of field will be "All" indicating that all channels on the current chassis will be
calibrated concurrently.

Gain

Indicates the current gain value scheduled to be calibrated. The value of this field initially starts at 1
for each channel being calibrated and will go up the maximum gain value for the current chassis. (10
for the WaveBook/512, 100 for the WBK10).

Bipolar

Indicates the current polarity scheduled to be calibrated. Both bipolar and unipolar polarity are
calibrated for each gain value. This value initially is set to unipolar for each gain and will subsequently
toggle to bipolar for the current gain value.

WaveCal automatically updates the current calibration parameters depending on their current settings
and user events. The calibration procedure is controlled by the following command buttons:

Calibrate

This button initiates the 2-point calibration procedure for the
current calibration settings displayed under calibration
parameters. This may be performed as many times as the user
desires for the current calibration parameters indicated.
When the Calibrate button is clicked, the Two-Point
Calibration screen will be displayed (see figure).

The calibration will be performed on the calibration
parameters (Chassis, Channel, Gain and Bipolar) shown on
the previous screen. The user will be prompted to apply a
voltage source to the appropriate channel at the level
indicated. The user may optionally change the voltage level
slightly if it better suits the calibrator. After the appropriate
voltage level has been applied, the Calibrate button may then
be clicked to initiate the calibration of the first point. The user
will then be prompted to apply a new voltage level to the
appropriate channel for calibration of the second point.
Again, the voltage level may be changed slightly if the
indicated voltage is not ideal for the calibrator. The
calibration of the second point is then again initiated by
clicking the Calibrate button. The 2-point calibration for the
current Calibration Parameters is now complete.

Chapter 2 Installation, Configuration, and Calibration

WaveBook User’s Manual 2-13

Save

This button saves the calibration constants for the current calibration parameters indicated. Before
executing this command, the 2-point calibration for these settings must have first been performed. The
save action will also automatically update the calibration parameters to reflect the next chassis, channel,
gain and bipolar parameters scheduled to be calibrated. Once this command has been executed,
however, you may not return to the previous calibration parameter settings. So, be sure that you are
satisfied with the calibration before executing the Save command.

Test

This button may be used to test channel voltage levels both before and after calibration. This command
will display the current voltage level for the current channel(s). If concurrent calibration has been
selected for the chassis, then the voltage levels for all 8 channels for the current chassis will be
displayed. Otherwise, only the voltage level for the current channel will be displayed. A sample test is
shown below:

Skip

This button may be used to skip the current calibration parameters indicated and move the next
scheduled chassis, channel, gain and bipolar setting. This button may be used if it is not desirable to
change the current calibration for the settings indicated.

Exit

This button is used to exit the Chassis Calibration screen. This may be used following the successful
calibration of the entire system or to exit the current calibration process.

Installation, Configuration, and Calibration Chapter 2

2-14 WaveBook User’s Manual

- Notes

WaveBook User’s Manual WaveBook Expansion Options, DBK30A 3-1

WaveBook Expansion Options 3
This chapter describes the option cards and modules that can be used with the WaveBook/512. WaveBook
expansion options are listed in the following table. Additional items, not reflected by the table, may be
available by the time this document goes to print. Note that some expansion options, such as WBK20 and
WBK21, are shipped with additional documentation.

Option Cards and Modules Used with the WaveBook
Product Name/Description Capacity Page
DBK30A Rechargeable Battery/Excitation Module 12-14, 24-28 VDC

3.4 A-hr @ 14 V
3-2

DBK34 Vehicle UPS Module
(Uninterruptable Power Supply)

12/24 VDC
5.0 A-hr @ 12 V

3-6

WBK10 Expansion Module 8 channels 3-8
WBK11 Simultaneous Sample & Hold Card 8 channels 3-11
WBK12 Programmable Low-Pass Filter Card 8 channels 3-13
WBK13 Programmable Low-Pass Filter Card With SSH 8 channels 3-13
WBK14 Dynamic Signal Conditioning Module 8 channels 3-16
WBK15 8-Slot 5B Signal Conditioning Module 8 channels 3-23
WBK16 Strain-Gage Module 8 channels coming soon
WBK20 PCMCIA/EPP Interface Card >2 Mbytes/s 3-28
WBK21 ISA/EPP Interface Card >2.5 Mbytes/s 3-29
WBK61 High-Voltage Adapter with 200:1 Voltage Divider 1 channel 3-31
WBK62 High-Voltage Adapter with 20:1 Voltage Divider 1 channel 3-31

The WaveBook/512 is designed for easy expansion with the WBK family of option cards and modules.
Internally, the WaveBook/512 has room for 1 signal conditioning card. For expansion, you can use 1 or
more expansion modules (WBK10, WBK14, and/or WBK15).

In expanding systems, be sure to provide adequate power. Various configurations are possible including the
use of a DBK30A Battery Module (also used in the Daq* family of products). Power supply options and
setups are discussed in the next section and the DBK30A and WBK10 sections.

Power Management
Some WaveBook products use more power than others; it is important to compute your system’s
requirement so you can provide adequate and reliable power. Computing the power use is important when
using batteries so you can determine a safe runtime before recharging. Note: using the AC adapter supplied
with each module supplies sufficient power—you need not make these calculations unless you are daisy-
chaining units or where battery runtime is critical.

CAUTIONCAUTION

An incorrect use of power can damage equipment or affect performance.

To estimate your system’s total power
requirement, add up the amperage for all units in
your system (see Worksheet table on next page).
The table at right gives the amperage
requirements for the WaveBook family of
products using the DBK30A at both voltage
settings and using the TR-40U. Note: higher
voltages draw fewer Amps for the same power
(current drawn with other sources such as a car
battery can be estimated from this table).

Current Requirements (in Amps) of WaveBook Products
Products and

Product Combinations
DBK30A
14 VDC

DBK30A
29 VDC

TR-40U
15 VDC

WaveBook/512 (alone) 0.43 0.20 0.40
WBK10 (alone) 0.32 0.20 0.30

WBK11 0.27 0.10 0.22
WBK12 0.47 0.23 0.45
WBK13 0.57 0.28 0.20

WBK14 (alone) 0.90 0.50 0.85
WBK15 (alone) 0.13 0.08 0.12

WBK15 (typical)* 0.24 0.13 0.23
WBK15 (max)** 0.75 0.36 0.70

*Typical with 8 voltage modules.
** Maximum load with 8 strain-gage modules.
You may need to consult power specifications for individual

5B modules and for any excitation currents required.

3-2 DBK30A, WaveBook Expansion Options WaveBook User’s Manual

You can compute your power requirements by filling in the following table and performing the indicated
operations. Do not overload your power supply; with heavily-loaded systems (over 2.5 A when using the
TR-40U), you may need to use more than one power source.

Worksheet for Power Requirements
Unit Qty Amps Totals

WaveBook/512 × =
WBK10 × =
WBK11 × =
WBK12 × =
WBK13 × =
WBK14 × =
WBK15 × =

Maximum Amps

Input voltage to the system modules (WaveBook/512, WBK10, WBK14, WBK15) must be 10 to 30 VDC
and can come from an AC adapter or from a battery. System cards (WBK11,12,13) get power from their
expansion module.

Available AC adapters include the TR-40U (supplied) and the TR-27 (optional).
• TR-40U has an input of 90-264 VAC and an output of 2.50 A @ 15 VDC.
• TR-27 has in input of 120 VAC (19.5 W) and an output of 800 mA @ 18 VDC.

Battery options include the DBK30A (see chapter 3) or other 10 to 30 VDC source such as a car battery.
The DBK30A provides 14 VDC and when fully-charged has a storage capacity of 3.4 A⋅hr. (Car batteries
have much higher capacities.) The basic formula for battery life is:

Runtime (hr) = Battery capacity (A⋅hr) / Current load (A)

Note: Battery life and performance depend on various factors including battery type/condition, charge
level, and ambient temperature—you may want to allow a corresponding tolerance factor where runtime is a
critical factor.

Connection: multiple units running on a common power supply can be daisy-chained together with CA-115
power cables (the DC current source must be sufficient for all daisy-chained units). The optional CA-116
cable permits the system to be plugged into a car lighter socket.

Power Connector Pinout

Some users may wish to make their own cable for powering the WaveBook/512 and WBK option modules
from a custom supply. The following diagram shows the pinout for the DIN5 power connector:

Note: CA-115 and 5-pin DIN are rated at 5 Amps maximum load.

DIN5 Power Pinout

WaveBook User’s Manual WaveBook Expansion Options, DBK30A 3-3

DBK30A Rechargeable Battery Module

Description
The DBK30A contains a rechargeable nickel-cadmium battery that can power portable applications of a
WaveBook/512, expansion WBK modules, and transducers that require excitation. The unit’s rugged metal
package is the same modular size as WaveBook products for convenient stacking with the included fastener
panels and Velcro tabs. Note: In some cases, it may be necessary to compute the power use by all
connected equipment. Refer to power specifications for each component, and then verify that your power
source is sufficient for your runtime requirements.

DBK30A Block Diagram

Power input comes from the included AC adapter that converts AC mains power into 24 VDC to charge the
unit’s 2 battery packs. Automatic charging circuits recharge the internal batteries quickly and safely when
connected to the supplied AC adapters. For trouble-free operation, you must fully charge the batteries
before use. The charged battery runtime will depend, of course, on the current load and mode of operation.

The 2 modes of operation are the DBK30 and DBK31 modes (the DBK30A replaces these models). An
internal slide switch SW2 determines whether the DBK30A will act as a DBK30 (default) or DBK31.

• The DBK30 mode provides 14 VDC for 3.4 A-hr. The typical battery runtime is from 3 to 6 hours
depending on the load. Note: This is the default mode and should normally be used for the
WaveBook/512 and WBK modules unless 28 VDC is also required.

• The DBK31 mode provides both 14 VDC and 28 VDC. 14 VDC is used for unregulated bridge
excitation for bridge-configured sensors (such as load cells) and power to WBK expansion products.
28 VDC is used for loop currents for 2-wire 4-20 mA transmitters (1.7 A-hr). The battery run-time
ranges from 1 to 6 hours, depending on system configuration.

Note: Unless you need 28 V, leave the DBK30A in the default DBK30 mode. In the DBK31 mode, only
1 of the 2 battery packs provides 14 VDC (instead of both packs in parallel in the DBK30 mode); thus,
runtime is reduced in the DBK31 mode.

3-4 DBK30A, WaveBook Expansion Options WaveBook User’s Manual

Hardware Setup

Configuration

The only configuration option is the choice of modes as discussed above. If you do not need to use 28 V,
leave SW2 in the default position (for previously used units, you may need to verify the proper position).
The SW2 slide switch is located inside the module on the printed circuit board near the front center of the
unit. To configure the DBK30A’s mode:

1. Remove the top cover by unscrewing one screw and sliding the cover forward until it separates from
the module.

2. Locate SW2 and position it for the desired mode. Slide SW2 to the right for DBK30 operation
providing 14 VDC only. Slide SW2 to the left for DBK31 operation providing both 14 and 28 VDC.

3. Replace top cover and secure with screw.

Connection

The figure shows the pinout for the POWER OUT DIN5 connector. The 28 V pin is
only active in the DBK31 mode. The 14 V pin is always active.

The DBK30A package includes a short connecting cable (CA-115) to connect to the WaveBook/512 (and
possibly daisy-chained to a WBK expansion module). This cable connects the POWER OUT connector on
the DBK30A to the POWER IN connector on the WaveBook.

Connections for the DBK31 Mode
The primary purpose of the DBK31 mode is to power external user-supplied loop transmitters. The hookup
is simple, as shown below.

Connecting Loop Transmitters

Another use for the DBK31 mode is providing an excitation source for bridge-type sensors such as load
cells (strain gages) and other devices that may be attached to 5B modules inside a WBK15. The excitation
voltage is not regulated by the DBK30A; so, this voltage must be externally regulated to 10.00 V for most
load cells.

WaveBook User’s Manual WaveBook Expansion Options, DBK30A 3-5

Charging the Battery Module
The DBK30A package includes a charger for the intended line voltage (120 VAC or 230 VAC). To charge
the battery module, plug the output cable from the charger into the POWER IN connector on the DBK30A,
and plug the charger into AC power. The charge cycle begins automatically whenever AC power is applied
after an interruption. The charge cycle ends when the batteries are fully charged.

Connecting the Charger
To manually initiate a charge cycle, press the START CHARGE momentary rocker-arm switch.
Subsequent charge cycles applied to a fully-charged DBK30A will have no ill effect. The module will
sense the fully-charged status and revert to the trickle-charge state within a few minutes.

Three LEDs on the DBK30A provide status information on the charging process or the external load.

CAUTION
Periodically, fully discharge the DBK30A to inhibit “lazy chemistry”
(memory) in the cells. To manually discharge a battery pack, connect a
WaveBook to the pack and leave it powered-on until the indicator lights go
dark.

Using the Battery Module While Charging
Both operating modes are capable of powering the WaveBook products while being charged; however, the
charging current is reduced, and charging time is increased. If AC power is interrupted, a new charge cycle
will begin automatically when AC power returns.

CAUTION
Even with the AC adapter, the batteries will eventually discharge under a
WaveBook operating load. Charging DOES NOT BEGIN
AUTOMATICALLY (except on power-up). You must manually initiate the
next charge cycle. Do not expect a WaveBook powered by a DBK30A to
operate as an uninterruptable power supply.

DBK30A - Specifications
Name/Function: Rechargeable Battery Module
Battery Type: Nickel-cadmium
Number of Battery Packs: 2
Battery Pack Configuration: 12 series-connected

sub-C cells
Output Voltage: 14.4 V or 28.8 V (depending on the

selected mode)
Output Fuses: 2 A

Battery Amp-Hours: 3.4 A-hr (1.7 A-hr/pack)
Charge Termination: Peak detection
Charge Time: 2 hours
Charging Voltage from Supplied AC Adapter: 22 to

26 VDC @ 2 A
AC Adapter Input: 95 to 265 VAC @ 47 to 63 Hz
Size: 221 mm × 285 mm × 35 mm
 (11" × 8-1/2" × 1-3/8")
Weight: 2.4 kg (6 lb)

LED Meaning
POWER IN Illuminates when the charger is connected to a source of AC power

and to the battery module.
BATTERY

CHARGING
Illuminates steadily while battery is in the high current (2 A) charge

mode. Flashes briefly, one or two flashes at a time, when the
internal batteries are fully charged.

POWER OUT Illuminates steadily when an external WaveBook product is
connected and drawing current from the battery modules.

3-6 WBK10, WaveBook Expansion Options WaveBook User’s Manual

DBK34 Vehicle UPS Module

Overview
The DBK34 can power a data acquisition system in portable and in-vehicle applications (both 12 and 24 V
systems). Power storage capacity is 5 A-hr @ 12 VDC or 2.5 A-hr @ 24 VDC. For reliable data
acquisition in a vehicle, the DBK34 provides clean and consistent operating power:

• Prior to engine/generator start
• During engine start-up (battery sag due to the high-current demand of starter motor and solenoid)
• After engine turn off.

The DBK34 contains 2 sealed-lead rechargeable batteries and associated charging circuits and current
indicators. Typically, these batteries can last more than 300 full cycles and up to 10 years standby lifetime
at room temperature. Recharging is fast, and extreme temperature performance is good. The DBK34 can
be used with the LogBook, DaqBook, WaveBook, and related DBKs and WBKs. The unit’s rugged metal
package has a compatible 8×11” footprint for convenient stacking with Velcro tabs and optional fastener
panels and handles for carrying.

Main and auxiliary power input comes from 12 or 24 VDC via a terminal block on the unit’s front panel
(12/24 V modes are set by front-panel jumpers). Automatic charging circuits recharge the internal batteries
quickly and safely. For trouble-free operation, you must fully charge the batteries before use. The charged
battery runtime will depend on the load and mode of operation. Note: See Power Management at the
beginning of this chapter for details how to compute power requirements.

DBK34 Block Diagram and Front Panel

Note: TB1 pin numbers read from right to left as viewed from the front panel.

WaveBook User’s Manual WaveBook Expansion Options, WBK10 3-7

Hardware Setup

Configuration

The 12 or 24 V configurations are selected as follows:
• for 12 V operation, set 2 jumpers on terminals 6-7 and 8-9 of TB1
• for 24 V operation, set 1 jumper on terminals 6-7 of TB1

Connection

Power In - (vehicle main/auxiliary batteries, 12 or 24 VDC only) Connect main
battery positive to terminal 3 of TB1 and main negative to terminal 4. If an
auxiliary battery is used, connect its positive to terminal 1 and negative to
terminal 2.

Power Out - The figure shows the pinout for the POWER OUT DIN5
connectors. The DBK34 package includes a short connecting cable (CA-115)
to connect to the powered device. This cable connects the POWER OUT connector on the DBK34 to the
POWER IN connector on the LogBook, DaqBook, or DBK module.

DBK34 Operation
Indicators: 3 LEDs on the DBK34 provide status information on the power and charging process.

LED Meaning
MAIN POWER Lights when the DBK34 is connected to a live vehicle (main) battery.
CHARGING Lights when internal batteries are being charged at a rate of 0.025 to 0.050 A or greater.
DISCHARGING Lights when internal batteries are discharging at a rate of 0.025 to 0.050 A or greater.

Runtime: Approximate runtime under various loads can be computed from the storage capacity (5 A-hr in
12 V mode; 2.5 A-hr in 24 V mode) and the load (main unit and other DBKs). See section Power
Management at the beginning of this chapter. Factory testing determined the following run-times:

Run-time Load Conditions
240 minutes DBK34 with 0 watt external load @ 23°C
190 minutes DBK34 with 2.34 watt external load @ 23°C
120 minutes DBK34 with 6.79 watt external load @ 23°C

Charging: In general, lead-acid batteries require charging at 120% of drain energy (e.g., the 5 A-hr DBK34
requires a charge equal to or greater than 6 A-hr). Charging times vary; but 4 to 5 hours at 14 V is typical
for a totally empty battery.

CAUTIONCAUTION
Voltage applied to charge a DBK34 must not exceed 15 VDC in 12 V mode or 30
VDC in 24 V mode. If not charging from the vehicle, a generic automobile battery
charger (3 A) in 12 V mode is recommended.

Environmental Concerns

CAUTIONCAUTION
The DBK34’s batteries contain toxic materials (Pb and H2SO4). After the battery’s
life cycle is over (up to 300 full cycles or 5-10 years of use), sealed-lead batteries
must be recycled or properly disposed of.

DBK34 - Specifications
Name/Function: Vehicle UPS Module
Battery Type: Sealed-lead rechargeable
Number of Battery Packs: 2
Battery Pack Configuration: 6 series-connected D cells
Output Voltage: 12 V or 24 V (depending on jumpers)
Output Fuses: 8 A on each internal battery (2)

Battery Capacity (Amp-Hours):
 5 A-hr in 12 V mode (parallel)
 2.5 A-hr in 24 V mode (series)
Operating Temperature: -20°F to 122°F (-29°C to 50°C)
Size: 8½ × 11 × 1¾ in. (216 × 279 × 44 mm)
Weight: 7.2 lb (3.27 kg)

3-8 WBK10, WaveBook Expansion Options WaveBook User’s Manual

WBK10 - Expansion Module

Description
The WBK10 expansion module provides the WaveBook/512 with 8 additional differential analog inputs,
each equipped with a programmable gain instrumentation amplifier (PGA). The WaveBook/512 and
WBK10 have a built-in expansion bus. Up to eight WBK10s can be cascaded together, for a total system
capacity of 72 differential channels. Each WBK10 is also capable of supporting a WBK11, WBK12, or
WBK13 option card.

Physically, the WBK10 is the same size as the WaveBook/512 for convenient mounting. A fastener panel
allows multiple units to be stacked vertically. Screw-on handles are available for portable applications.

WBK10 Block Diagram

WBK10 Front Panel

The front panel of the WBK10 has the following connectors and indicators (see figure next page):
• 1 Analog Common binding post for reference
• 8 BNC connectors for analog inputs (channels are labeled 1 through 8 although additional WBK10s

beyond the first will be identified by higher channel numbers as discussed in Configuration)
• 3 Status LEDs (Active, Ready, Power)

WBK10 Front Panel

WaveBook User’s Manual WaveBook Expansion Options, WBK10 3-9

WBK10 Rear Panel

The rear panel of the WBK10 has a power switch and the following connectors (see figure):

• 2 circular 5-pin DIN5 connectors for Power-in and Power Pass-through
• 1 HD-15M expansion control input
• 1 HD-15F expansion control output
• 2 BNC connectors for analog expansion in and out

WBK10 Rear Panel

Hardware Setup

Configuration

The analog input channel numbers are determined by the order of connection
among the WaveBook/512 and attached WBK10s.

• Channel 0 is the WaveBook’s 8-bit digital I/O port.
• Channels 1 through 8 are the WaveBook’s main channels.
• Channels 9 through 16 are located on the first expansion unit (the one

connected directly to the WaveBook).
• Additional channel numbers (in groups of 8) are added consecutively

with added WBK10s (see table).

CAUTION
If the following three conditions exist simultaneously:

• • operating WBK10s in a configuration of 4 or more modules
• ambient temperature >40°C
• WBK12 or WBK13 card installed,

then you must mount the modules on their side (vertically) to facilitate air flow
through the side plates. Failure to due so could result in thermal-related problems.

WBK10 Cabling

WBK expansion modules can be configured flexibly for various applications. A WBK10 connects to a
WaveBook/512 or to another WBK10. A lone WBK10 in the system connects directly to the
WaveBook/512. An add-on WBK10 connects to the previous WBK10 in a daisy-chain fashion. Note:
other WBK expansion modules are connected in a similar way.

Connections must be made for signals, control messages, and power as shown in the full-page figure and
described below.

Signals are carried by a CA-150-1 coax cable with BNC connectors. Each WBK10 drives a common
parallel analog bus which carries the signals to the ADC in the WaveBook/512. Each WBK10 has input
and output connectors for daisy-chaining multiple units.

Control messages are carried by a CA-129 analog expansion control cable (HD-15, plug and socket
connectors). The first expansion unit’s control input is driven from the main unit’s control output. Control
inputs of additional WBK10s are driven from the preceding unit’s control output.

Power for the WBK10s can be supplied in 3 ways with several cable options that connect to the units via a
DIN5 connector:

• Using the included power supply for one WBK10. A separate supply must be used for each WBK10
in the system. The next figure shows 3 WBK10s, each with a wall-mounted power supply.

• Providing a high-current supply for several WBK10s. A single high-current DC supply such as a TR-
22 can power several WBK10s daisy-chained together with CA-115 power cables (6-inch length).
(The number of WBK10s is limited to the amount of power available and the amount of power used
by option cards.) See the next figure for connection details, and Appendix C for power requirements.

Unit Channel #
WaveBook/512 0 (dig I/O)
WaveBook/512 1-8
1st WBK10 9-16
2nd WBK10 17-24
3rd WBK10 25-32
4th WBK10 33-40
5th WBK10 41-48
6th WBK10 49-56
7th WBK10 57-64
8th WBK10 65-72

3-10 WBK10, WaveBook Expansion Options WaveBook User’s Manual

• The DBK30A can provide battery power for portable applications via the CA-115 power cable. Refer
to preceding DBK30A section of this chapter.

• Other 10 to 30 VDC power source such as a car battery.

Note: For custom power cabling, refer to the DIN5 connector’s pinout in Appendix E. For power requirements, refer to
Appendix C.

WBK10 Cable Connections

WaveBook User’s Manual WaveBook Expansion Options, WBK10 3-11

Software Setup in WaveView
Depending on your application, you will need to set several software parameters so that WaveView will
organize your system to your requirements. Two overview screens (shown later in this chapter and detailed
in chapter 5) include:

• WaveView Configuration displays all channels in the system with their setup status.
• Module Configuration has a System Inventory box that displays all modules and attached option cards

in the system.

WBK10 - Specifications
Name/Function: WBK10 8-Channel Analog Expansion Module
Number of Channels: 8 differential
Connector: BNC
Accuracy: ±0.025% FS
Offset: ±1 LSB max
Maximum Overvoltage: 30 VDC
Ranges: Unipolar/Bipolar operation is software selectable via sequencer
 Unipolar: 0 to +10 V, 0 to +5 V, 0 to +2 V, 0 to +1 V
 Bipolar: -5 to +5 V, -2.5 to +2.5 V, -1 to +1 V, -0.5 to +0.5 V
Input Current: 50 nA typ, 500 nA max
Input Impedance
 Single-ended: 5 MΩ in parallel 30 pF
 Differential: 10 MΩ in parallel 30 pF
Gain Temperature Coefficient: 5 ppm/°C typ
Offset Temperature Coefficient: 12 uV/°C max
Power: 0.6 A max @ 15 VDC
Dimensions: 220 mm wide × 285 mm long × 35 mm high (8.5” × 11” × 1.375”)
Weight: 1.3 kg (2.8 lb)

3-12 WBK11, WaveBook Expansion Options WaveBook User’s Manual

WBK11 - Simultaneous Sample & Hold Card

Description
The WBK11 is a field-installable sample-and-hold (SSH) card that can simultaneously sample 8 channels.
The WBK11 installs internally into a WaveBook/512 or a WBK10 and is controlled by the WaveBook/512.
The WBK11 allows concurrent (<150 ns) capture of multiple input channels and virtually eliminates
channel-to-channel time skewing. The WBK11 also extends input voltage ranges to include ±0.05, ±0.1,
±0.25, and unipolar 0.1, 0.2, and 0.5 V. Note: With an SSH channel enabled, per-channel sample rates are
reduced by the same amount as adding an additional channel. The per-channel rate with SSH is 1 MHz /
(n+1), where n is the number of active channels.

The WBK11 SSH card can accommodate higher gains than the main unit because its
gains are fixed for each channel prior to the acquisition. Each channel may be set, in
software for ranges shown in the table. All channels equipped with SSH circuitry are
sampled simultaneously as a system.

The next figure shows a block diagram of the WBK11.

WBK11 Block Diagram

WBK11 Hardware Setup
The next figure shows the board
layout for the WaveBook/512.
The WBK10 layout is similar in
those areas which connect to the
WBK11.

There are 2 headers in the
WBK10 (3 in the
WaveBook/512):

• J10 & J11 - Used for the
connection of the WBK11
Simultaneous Sample &
Hold option card. The
jumpers located on J10/J11
provide signal pass-
through when the WBK11
is not installed in the
WaveBook.

• (WaveBook only - J101
reserved for future use)

WBK11
Voltage Ranges

0-10.0 V ±5.0 V
0-5.0 V ±2.5 V
0-2.0 V ±1.0 V
0-1.0 V ±0.5 V
0-0.5 V ±0.25 V
0-0.2 V ±0.10 V
0-0.1 V ±0.05 V

Board Layout of WaveBook/512

WaveBook User’s Manual WaveBook Expansion Options, WBK11 3-13

The following steps detail the procedure to install the WBK11 card into the WaveBook/512 or WBK10
module.

1. Remove power from the unit.
2. Remove the screw holding down the top panel (cover).
3. Slide the panel out towards the back and remove.
4. Locate the two headers (J10 & J11) on the main board, and remove the jumpers (see previous figure).

Save the jumpers in the event the SSH board needs to be removed.
5. The WBK11 fits into the host device only one way. Turn the WBK11 over so that the headers of

both boards face each other. Position the board so that the headers of the WBK11 are lined up
directly above the host board headers (see figure).

6. Move the WBK11 board down until the connectors mate. Push down gently to seat them.
7. With screws, secure the WBK11 to the mounting posts on the main board.
8. Slide the top panel into the unit.
9. Reinstall the top panel screw.
10. Power up the unit and run WaveView to verify that the channels connected to the WBK11 now have

the extra ranges available.

WBK11 - Specifications
Name/Function: WBK11 8-Channel Simultaneous Sample-and-Hold Card
Number of Channels: 8
Connectors: Internal to the WaveBook/512 (36-pin sockets mate with 36-pin connectors)
Accuracy: ±0.025% FS
Offset: ±1 LSB max
Aperture Uncertainty: 75 ps max
Voltage Droop: 0.1 mV/ms max
Maximum Signal Voltage: ±5.00 VDC (×1)
Input Voltage Ranges: Software programmable prior to a scan sequence; expands WaveBook/512 ranges to:
 Unipolar: 0 to +10 V, 0 to +5 V, 0 to +2 V, 0 to +1 V, 0 to +0.5 V
 Bipolar: -5 to +5 V, -2.5 to +2.5 V, -1 to +1 V, -0.5 to +0.5 V, -0.05 to +0.05 V
Programmable Gain Amplifier Gain Ranges: ×1, 2, 5, 10, 20, 50, 100
Weight: 0.14 kg (0.3 lb)

WBK11 Connection to WBK10 (or WaveBook\512)

Top panel and screw

3 screws attach
WBK11 to
mounting posts on
main board

Gently connect
mating headers
J10 and J11

3-14 WBK12/13, WaveBook Expansion Options WaveBook User’s Manual

WBK12/13 Programmable Low-Pass Filter Cards

Description
The WBK12 and WBK13 are 8-channel programmable low-pass filter cards for use with the 1-MHz
WaveBook/512 data acquisition system. These cards install directly into the WaveBook/512 or WBK10
expansion module and provide programmable low-pass filtering over all channels. Multiple WBK12 and
WBK13 cards can be installed in one system for up to 72 channels. All of the cards’ low-pass filters and
cutoff frequencies are configured via software.

The WBK13 has the additional capability of simultaneous sampling all channels. If multiple WBK13 cards
are installed within one system, all channels are sampled within 100 ns of each other.

Features of the WBK12 and WBK13 include:

Low-Pass Filters. Each card provides 8 input channels, arranged in two 4-channel banks; the filter and
cutoff frequency configurations are applied per bank. The cards’ filters can be configured as either an 8-
pole elliptic filter with cutoff frequencies of 400 Hz to 100 kHz, or an 8-pole linear-phase filter with 400 Hz
to 50 kHz cutoff frequencies.

Cutoff Frequencies. The WBK12 and WBK13 provide 747 discrete cutoff frequencies that can be
determined exactly by the formula Fc = 300 kHz/N; where the integer N = 3 to 750. Alternatively, you can
configure any channel to bypass the programmable filter entirely, resulting in a 1-pole low-pass filter at
about 500 kHz.

Programmable-Gain Amplifiers. The cards’ programmable-gain instrumentation amplifiers can be
software selected to gains of ×1, 2, 5, 10, 20, 50, and 100 on a per channel basis. The WBK12 and WBK13
provide 6 ranges with full-scale inputs from ±50 mV to ±5 V bipolar (+100 mV to +10 V unipolar). These
gains are set prior to the beginning of an acquisition sequence and cannot be changed during an acquisition.

 (WBK13 only) Simultaneous Sample-and-Hold (SSH). In addition to the filtering capability of the
WBK12, the WBK13 also provides per channel SSH. Simultaneous sampling of all channels occurs at the
start of a scan sequence. Note: With an SSH channel enabled, per-channel sample rates are reduced by the
same amount as adding an additional channel. The per-channel rate with SSH is 1 MHz / (n+1), where n is
the number of active channels. The figure shows a block diagram of the WBK12 and WBK13.

WBK12 and WBK13 Block Diagram

WaveBook User’s Manual WaveBook Expansion Options, WBK12/13 3-15

Hardware Setup

Configuration

The WBK12 and WBK13 require no hardware setting (all configurations by software).

Connection

The WBK12 and WBK13 connect to a WaveBook/512 or WBK10 in much like the WBK11 (refer to
previous section).

Software Setup in WaveView
Depending on your application, you will need to set several software parameters so that WaveView will
organize data to your requirements. The next figure shows the WaveView Configuration screen and calls
out several parameters of importance to the WBK12/13 (specifically the low-pass filter options). Note: if
necessary, refer to chapter 5 Using WaveView for more information on using the columns to configure a
channel.

Software Function
The following code (in C language with the standard API) demonstrates the function calls to configure a WBK12* located in
the main WaveBook chassis. *Note: The WBK13 program is the same except the parameters use ...Wbk13... instead of
...Wbk12....

// Configure channel 1 for: low-pass filter on with a cutoff of 1000Hz, using a linear
filter type and the software-chosen pre-filter.

wbkSetChanOption(1, 1, WcotWbk12FilterCutOff, 1000.0);
wbkSetChanOption(1, 1, WcotWbk12FilterMode,

(double) WcovWbk12LowPassOn);
wbkSetChanOption(1, 1, WcotWbk12FilterType,

(double) WcovWbk12FilterLinearPhase);
wbkSetChanOption(1, 1, WcotWbk12PreFilterMode,

(double) WcovWbk12PreFilterDefault);

Turn on or bypass the
WBK12/13’s low-pass filter

Set the WBK12/13’s low-
pass filter cutoff frequency

Set the WBK12/13’s
low-pass filter type

3-16 WBK12/13, WaveBook Expansion Options WaveBook User’s Manual

// Configure channel 5 for: low-pass filter on with a cutoff of 20000Hz, using an
elliptic filter type and the software-chosen pre-filter.

wbkSetChanOption(5, 1, WcotWbk12FilterCutOff, 20000.0);
wbkSetChanOption(5, 1, WcotWbk12FilterMode,

(double) WcovWbk12LowPassOn);
wbkSetChanOption(5, 1, WcotWbk12FilterType,

(double) WcovWbk12FilterElliptic);
wbkSetChanOption(5, 1, WcotWbk12PreFilterMode,

(double) WcovWbk12PreFilterDefault);

// Turn on all the low-pass filters on channels 6 through 8. NOTE: These channels
will use the same cutoff frequency and filter type as channel 5.

wbkSetChanOption(6, 1, WcotWbk14LowPassMode,
(double) WcovWbk12LowPassOn);

wbkSetChanOption(7, 1, WcotWbk14LowPassMode,
(double) WcovWbk12LowPassOn);

wbkSetChanOption(8, 1, WcotWbk14LowPassMode,
(double) WcovWbk12LowPassOn);

// Turn off all the low pass filters on channels 2 through 4.
wbkSetChanOption(2, 1, WcotWbk14LowPassMode,

(double) WcovWbk12LowPassBypass);
wbkSetChanOption(3, 1, WcotWbk14LowPassMode,

(double) WcovWbk12LowPassBypass);
wbkSetChanOption(4, 1, WcotWbk14LowPassMode,

(double) WcovWbk12LowPassBypass);

WBK12/13 - Specifications
Name/Function: WBK12, Programmable Low-Pass Filter Card
 WBK13, Programmable Low-Pass Filter Card With SSH
Number of Channels: 8
Connector: Internal to WaveBook/512 and WBK10 (two 36-pin sockets mate with 36-pin connectors)
Input Voltage Ranges: Software programmable prior to a scan sequence

Unipolar Bipolar
Voltage Range Gain Voltage Range Gain

0 to +0.1 V ×100 ±0.05 V ×100
0 to +0.2 V ×50 ±0.1 V ×50
0 to +0.5 V ×20 ±0.25 V ×20
0 to +1 V ×10 ±0.5 V ×10
0 to +2 V ×5 ±1 V ×5
0 to +5 V ×2 ±2.5 V ×2
0 to +10 V ×1 ±5 V ×1

Programmable Gain Amplifier Ranges: ×1, 2, 5, 10, 20, 50, and 100
Switched Capacitor Filter Cutoff Frequencies Range: 400 Hz to 100 kHz
Number of Cutoff Frequencies: 747
Filter Grouping: 4 channels each in 2 programmable banks

Low-Pass Filter: Software selectable, 8-pole elliptic filter
Low-Pass Filter Type: Software selectable, elliptic or linear phase

Low-Pass Filter Frequency Cutoff Range: 100 kHz, 75 kHz, 60 kHz...400 Hz,
 bypass defined as Fc = 300 kHz/N where N = 3 to 750
Anti-Alias Frequencies: determined by software control
Accuracy: ±0.05% FS DC
Offset: ±1 LSB max
Aperture Uncertainty: 75 ps max
Voltage Droop: 1 mV/ms max (0.01 mV/ms typ)
Maximum Signal Voltage: ±5.00 VDC (×1)
THD: -65 dB (-70 dB typ)
Noise: 3 counts (RMS)
DC Offset: ±2.5 mV (2 LSB) max at any cutoff frequency
Number of Cutoff Frequencies Simultaneously Set: 2, one for each 4-channel bank of inputs
Weight: 0.14 kg (0.3 lb)

WaveBook User’s Manual WaveBook Expansion Options, WBK14 3-17

WBK14 Dynamic Signal Input Module

Introduction
The WBK14 is a dynamic analog signal input module for the 1 MHz WaveBook/512 data acquisition
system. The WBK14 provides a complete system to interface to piezoelectric transducers that include
accelerometers, microphones, force/pressure transducers, and others. Note: A tutorial section near the end
of this section (before the specifications) explains how to use accelerometers as well as some related theory
of operation.

Each WBK14 channel has: a current source for transducer biasing, a high-pass filter, a programmable gain
amplifier, an anti-aliasing low-pass filter, and sample-and-hold amplifiers. The gain, filter cut-off
frequencies and current biasing levels are software programmable.

The WBK14 also includes a built-in programmable excitation source to provide stimulus to dynamic
systems for transfer function measurements, as well as reference signals for calibration.

Hardware Description
The following text refers to the block diagram in the next figure.

WBK14 Block Diagram

Current Source

The WBK14 provides a constant current to bias ICP transducers. Two current levels (2 mA or 4 mA) with
voltage compliance of 27 V can be selected via software. The bias current is sourced through the center
conductor of a coaxial lead and returns to the WBK14 by the outer conductor. The output impedance is
larger than 1 MΩ and presents virtually no loading effect on the transducer’s output. For applications that
do not require bias, the current source can be removed from the BNC input by opening a relay contact. The
current sources are applied to (or removed from) the input in groups of two (i.e. channels 1-2, 3-4, 5-6, 7-8).

High-Pass Filter (HPF)

Each WBK14 channel has two independent HPFs with a 3 dB cut-off frequency (Fc) at 0.1 Hz and 10 Hz.
The 0.1-Hz HPF is a single-pole RC filter, and is primarily used to couple vibration signals. The 10-Hz
HPF is a two-pole Butterworth type and can be used to couple acoustic signals or attenuate setup-induced
low-frequency signals that can reduce the dynamic range of the measurement (e.g. when using tape
recorders as signal sources).

3-18 WBK14, WaveBook Expansion Options WaveBook User’s Manual

Programmable Gain Amplifier (PGA)
The HPF removes the DC voltage from the input signal. The AC voltage is amplified by a PGA with flat
response up to 500 kHz. Each channel has a PGA with 8 programmable gains (1, 2, 5, 10, 20, 50, 100, 200)
and a software-controlled DAC for offset nulling. The WBK14 measures only bipolar signals up to 5 V
peak.

Programmable Low-Pass Filter Phase Equalizer (PLPPE)
The first filter stage is a programmable 2-pole continuous-time low-pass filter. The PLPPE provides more
than 65 dB alias protection to the next filter stage. In addition, it fine-tunes the phase shift of the channel to
optimize the phase-matching between channels. At calibration, the phase shift of each channel is measured
and stored in a EEPROM, that is read at configuration.

Programmable Low-Pass Anti-Aliasing Filter (PLPAF)
Most of the signal alias rejection is performed by an 8-pole Butterworth filter. This filter is implemented
with a switch capacitor network driven by a programmable clock. Each channel has an independent clock
whose frequency determines the 3 dB cut-off frequency of the filter. The switch capacitor filter provides no
attenuation at the clock frequency, (hence, the need for the continuous-time low-pass filter). Note: The
PLPAF can be bypassed to process signals with a bandwidth higher than 100 kHz.

The EXT.CLK input provides a path to externally control the cut-off frequency of the PLPAF. The input
waveform can be TTL or sinusoidal, with an amplitude peak of at least 500 mV. In this mode, the cut-off
frequency is set to the input frequency divided by 50.

Simultaneous Sample and Hold
All WBK14 channels are sampled simultaneously, after which the WaveBook/512 measures each output at
1 µs/channel until all channels are digitized. The time-skew between sampling on all channels (up to72) is
150 ns, regardless of the number of WBK14s attached to the WaveBook/512. Note: With an SSH channel
enabled, per-channel sample rates are reduced by the same amount as adding an additional channel. The
per-channel rate with SSH is 1 MHz / (n+1), where n is the number of active channels.

Excitation Source
The excitation source includes a sine/random waveform generator, a programmable gain amplifier, a DC
level DAC, and a phase-lock loop (PLL). The PLL is used to synthesize the frequency of a fixed amplitude
sine wave and control the bandwidth of the random signals. The PGA conditions the signal amplitude to a
value between 0 V to 5 V peak. The DC level of the signal is varied independently of signal amplitude by a
software-controlled DAC from -5 V to +5 V. The DC level of the excitation signal can be used to balance
static loads, while the AC signal provides the dynamic excitation.

Power

Like the WaveBook/512, the WBK14 contains an internal power supply. The unit can be powered by an
included AC power adapter or directly from any 10 to 30 VDC source, such as a 12 V car battery. For
portable or field applications, the WBK14 and the WaveBook/512 can be powered by the DBK30A
rechargeable battery module. Note:

• For custom power cabling, refer to the DIN5 connector’s pinout in Appendix E.
• For power requirements, refer to Appendix C. You must compute power consumption for your entire

system and (if necessary) use auxiliary or high-current power supplies.

Calibrating the WBK14

The WBK14 is calibrated digitally, eliminating the need for all potentiometers and manual adjustments. A
Windows-based calibration application provided with the unit, simplifies the calibration process.

WaveBook User’s Manual WaveBook Expansion Options, WBK14 3-19

Hardware Setup

Configuration

The WBK14 requires no hardware setting. All configurations are controlled by software.

Connection

The WBK14 is connected to a WaveBook/512 or WBK10 in much the same way as the WBK10, as
previously described.

CAUTION
If the following two conditions exist simultaneously:

• • operating WBK14s in a configuration of 4 or more modules
• ambient temperature >40°C;

then you must mount the modules on their side (vertically) to facilitate air flow
through the side plates. Failure to due so could result in thermal-related
problems.

Software Setup in WaveView
Depending on your application, you will need to set several software parameters so that WaveView will
organize data to your requirements. The next figure shows the WaveView Configuration screen and calls
out several parameters of importance to the WBK14 (specifically the low-pass and high-pass filter options).
Note: if necessary, refer to chapter 5 Using WaveView for more information on using the columns to
configure a channel.

Turn on or bypass
the WBK14’s low-

pass filter

Set the WBK14’s low-pass
filter cutoff frequency

Set the WBK14’s
high-pass filter

cutoff frequency

Set the WBK14’s
current source output

Configure the WBK14’s
excitation source

Apply excitation source configuration
changes to the WBK14 hardware

3-20 WBK14, WaveBook Expansion Options WaveBook User’s Manual

Software Function
The following code (in C language) demonstrates the function calls to configure a WBK14.

// Configure channel 9 for: low pass filter on with a cutoff of 500Hz, using the
software chosen pre-filter, high pass filter cutoff at 10Hz, and current source
set to 2mA.

wbkSetChanOption(9, 0, WcotWbk14LowPassCutOff, 500.0);
wbkSetChanOption(9, 0, WcotWbk14LowPassMode,

(double) WcovWbk14LowPassOn);
wbkSetChanOption(9, 0, WcotWbk14HighPassCutOff,

(double) WcovWbk14HighPass10Hz);
wbkSetChanOption(9, 0, WcotWbk14CurrentSrc,

(double) WcovWbk14CurrentSrc2mA);
wbkSetChanOption(9, 0, WcotWbk14PreFilterMode,

(double) WcovWbk14PreFilterDefault);

// Configure channel 10 for: low pass filter on with a cutoff of 20000Hz, using the
software chosen pre-filter, high pass filter cutoff at 0.1Hz, and current
source set to 4mA.

wbkSetChanOption(10, 0, WcotWbk14LowPassCutOff, 20000.0);
wbkSetChanOption(10, 0, WcotWbk14LowPassMode,

(double) WcovWbk14LowPassOn);
wbkSetChanOption(10, 0, WcotWbk14HighPassCutOff,

(double) WcovWbk14HighPass0_1Hz);
wbkSetChanOption(10, 0, WcotWbk14CurrentSrc,

(double) WcovWbk14CurrentSrc4mA);
wbkSetChanOption(10, 0, WcotWbk14PreFilterMode,

(double) WcovWbk14PreFilterDefault);

// Turn all the low pass filters on the other channels (11-16) off
wbkSetChanOption(11, 0, WcotWbk14LowPassMode,

(double) WcovWbk14LowPassBypass);
wbkSetChanOption(12, 0, WcotWbk14LowPassMode,

(double) WcovWbk14LowPassBypass);
wbkSetChanOption(13, 0, WcotWbk14LowPassMode,

(double) WcovWbk14LowPassBypass);
wbkSetChanOption(14, 0, WcotWbk14LowPassMode,

(double) WcovWbk14LowPassBypass);
wbkSetChanOption(15, 0, WcotWbk14LowPassMode,

(double) WcovWbk14LowPassBypass);
wbkSetChanOption(16, 0, WcotWbk14LowPassMode,

(double) WcovWbk14LowPassBypass);

// Setup the excitation source to output a sine wave at 100Hz, with an amplitude of
2.5V, and an offset voltage of 0V. NOTE: the channel number can be any channel
on the Wbk14 module to be programmed.

wbkSetModuleOption(9, 0, WmotWbk14ExcSrcWaveform,
(double) WmovWbk14WaveformSine);

wbkSetModuleOption(9, 0, WmotWbk14ExcSrcFreq, 100.0);
wbkSetModuleOption(9, 0, WmotWbk14ExcSrcAmplitude, 2.5);
wbkSetModuleOption(9, 0, WmotWbk14ExcSrcOffset, 0.0);

Accelerometer Tutorial
A low-impedance piezoelectric accelerometer consists of a piezoelectric crystal and an electronic amplifier.
When stretched or compressed, the crystal develops a charge variation between its two surfaces that is
related to the amount of stress, shock, or vibration on the crystal. The amplifier transforms the sensor’s
high impedance to the output impedance of a few hundred ohms. Low-impedance piezoelectric transducers
are used to measure pressure and force as well as acceleration.

The accelerometer circuit requires only 2 wires (coax or twisted pair) to transmit both power and signal. At
low impedance, the system is insensitive to externally induced or “triboelectric” cable noise. Sensitivity is
not affected by cable length.

WaveBook User’s Manual WaveBook Expansion Options, WBK14 3-21

The figure shows a simplified accelerometer-WBK14 connection. The voltage developed across R is
applied to the gate of the MOSFET. The MOSFET is powered from a constant current source of 2 or 4 mA
and 27 volts.

Accelerometer Circuit

The MOSFET circuit will bias off at approximately 12 V in the quiescent state. As the system is excited,
voltage is developed across the crystal and applied to the gate of the MOSFET. This voltage will cause
linear variation in the impedance of the MOSFET, which will cause a proportional change in bias voltage.
This voltage change will be coupled to the WBK14 input amplifier through the capacitor C. The low
frequency corner is controlled by the value of R and the internal capacitance of the piezoelectric crystal.
Units weighing only a few grams can provide high level outputs up to 1 V/g with response to frequencies
below 1 Hz.

Accelerometer Specification Parameters
Noise in Accelerometers

The noise floor or resolution specifies lowest discernible amplitude (minimum “g”) that can be measured.
There are two main sources of noise. Noise from the crystal and microcircuit inside the accelerometer.
Some types of crystals, such as quartz, are inherently more noisy than others. A good accelerometer noise
floor is 10 to 20 µV. Noise from electrical activity on the mounting surface. Since the signal from the
accelerometer is a voltage, 60 Hz or other voltages (ground loop) will interfere with the signal. The best
protection is to electrically isolate the accelerometer.

Sensitivity
The sensitivity of a low-impedance accelerometer is defined as its output voltage per unit input of motion.

The unit of motion used is the “g”. One “g” is equal to the Earth’s gravitational acceleration which is 32.2
ft/(sec)(sec), 386.1 in/(sec)(sec), or 981 cm/(sec)(sec). The output is usually specified in millivolts per “g”
(mV/g). Sensitivity is usually specified under defined conditions (frequency, testing levels, and
temperature)—for example, 100 mV/g at a frequency of 100 Hz, level +1 g, at 72°F. While a given sensor
model may have a “typical” sensitivity of 100 mV/g, its actual sensitivities may range from 95 to 105 mV/g
when checked under stated conditions. Calibration values for individual sensors are typically provided by
the manufacturer.

Transverse Sensitivity
Accelerometers are designed to have one major axis of sensitivity, usually perpendicular to their base and

colinear with its major cylindrical axis. The output caused by the motion perpendicular to the sensing axis is
called the transverse sensitivity. This value varies with angle and frequency and typically is less than 5% of
the basic sensitivity.

Frequency Response
The frequency response of an accelerometer is defined as the ratio of the sensitivity of the accelerometer

measured at frequency (f) to the basic sensitivity measured at 100 Hz. This response is usually obtained at
a constant acceleration level, typically 1 g or 10 g. Convention defines the usable range of an
accelerometer as the frequency band in which the sensitivity remains within 5% of the basic sensitivity.
Measurements can be made outside these limits if corrections are applied. Care should be taken at higher
frequencies because mounting conditions greatly affect the frequency range (see mounting effects).

Bias Level
Under normal operation, a bias voltage appears from the output signal lead to ground. There are two basic

MOSFET configurations commonly used. One exhibits a 7-8 V bias and the second a 9-12 V bias.
Operation of the two circuits is identical except for the available signal swing. The low voltage version
typically exhibits 5-10 µVrms versus 10-20 µVrms for the high voltage.

Dynamic Range
The dynamic measurement range is the ratio of the maximum signal (for a given distortion level) to the

minimum detectable signal (for a given signal-to-noise ratio). The dynamic range is determined by several
factors such as accelerometer sensitivity, bias voltage level, power supply voltage, and noise floor.

Thermal Shock - Temperature Transients
Piezoelectric accelerometers exhibit a transient output which is a function of “rate-of-change” temperature.

3-22 WBK14, WaveBook Expansion Options WaveBook User’s Manual

This phenomenon., called “thermal shock”, is usually expressed in g/°C, and is related to the non-uniform
mechanical stresses set up in the accelerometer structure and the so-called pyroelectric effect in
piezoelectric materials whereby an electrical charge is produced by the temperature gradient across the
crystal. In practice, the effect is quasistatic, producing a low-frequency voltage input to the MOSFET
amplifier. While usually occurring well below the low-frequency corner, the effect can momentarily reduce
the peak clipping level and cause loss of data. The phenomenon does not affect the basic sensitivity of the
accelerometer and does not affect the data unless the thermal shift in the operation bias level results in
clipping. Where drastic thermal shifts are expected, the use of 12 V bias models is recommended. The
effect’s severity is related to the mass of the accelerometer. In 100 mV/g industrial units, the effect is
usually negligible. The effect can be reduced significantly by using rubber thermal boots provided for that
purpose

Base-Strain Sensitivity
Strain sensitivity in an accelerometer is defined as the output caused by deformation of the base due to

bending in the structure on which it is mounted. In measurements made on large structures with low natural
frequencies, significant bending may occur; units with low base strain sensitivity should be selected. Base
strain effects can be substantially reduced by inserting a washer smaller than the accelerometer base
diameter, under the accelerometer base to reduce the contact surface area. This technique lowers the
usable upper frequency range.

Connector
This specifies the connector type and size (4-48, 6-40, 10-32 coaxial etc.) and the location on the sensor, i.e.,

top or side (usually on the hex base). In cases where there is no connector on the sensor, an integral cable
is specified with the length and particular connector, i.e., integral 6 ft to 10-32.

Acoustic Sensitivity
High-level acoustic noise can induce outputs unrelated to vibrational input. In general, the effect diminishes

as the accelerometer mass increases. This effect may be reduced by using a light, foam rubber boot.
Overload Recovery

Recovery from clipping due to over-ranging is typically less than one millisecond. Recovery from quasi-static
overloads which generate high DC bias shifts are controlled by the accelerometer input RC time constant
which is fixed during manufacture.

Power Supply Effects
The nominal power supply voltage recommended by most manufacturers is 15 to 24 V. Units may be used

with voltages up to 28 volts. Sensitivity variations caused by voltage change is typically 0.05%/volt. Power
supply ripple should be less than 1 mV rms.

Electrical Grounding

Case-Grounded Design

In case-grounded designs, the common lead on the internal impedance matching electronics is tied to the
accelerometer case. The accelerometer base/stud assembly forms the signal common and electrically
connects to the shell of the output connector. Case-grounded accelerometers are connected electrically to
any conductive surface on which they are mounted. When these units are used, care must be exercised to
avoid errors due to ground noise.

Isolated-Base Design

To prevent ground noise error many accelerometers have base-isolated design. In these models the outer
case/base of the accelerometer is isolated electrically off ground by means of an isolation stud insert. The
proprietary material used to form the isolation provides exceptional strength and mechanical stiffness to
preserve high-frequency performance.

Cable Driving

Operation over long cables is a concern with all types of sensors. Concerns involve cost, frequency
response, noise, ground loops, and distortion caused by insufficient current available to drive the cable
capacitance.

The cost of long cables can be reduced by coupling a short (1 m) adapter cable from the accelerometer to a
long low-cost cable like RG-58U or RG-62U with BNC connectors. Since cable failure tends to occur at
the accelerometer connection where the vibration is the greatest, only the short adapter cable would need
replacement.

Capacitive loading in long cables acts like a low-pass, second-order filter and can attenuate or amplify high-
frequency signals depending on the output impedance of the accelerometer electronics. Generally this is not
a problem with low-frequency vibration (10 Hz to 2000 Hz). For vibration and shock measurements above
2000 Hz and cables longer than 100 ft, the possibility of either high-frequency amplification or attenuation
should be considered.

The WBK14 constant-current source provides 2 or 4 mA to integral electronics. Use the higher current
setting for long cables, high peak voltages, and high signal frequencies.

WaveBook User’s Manual WaveBook Expansion Options, WBK14 3-23

The maximum frequency that can be transmitted over a given length of cable is a function of both the cable
capacitance and the ratio of the maximum peak signal voltage to the current available from the constant
current source:

f
K

C
V

Icc Ib

=

−

2p

Where:
f = Maximum frequency in Hz
C = Cable capacitance in picoFarads
V = Maximum peak measured voltage from sensor in volts
Icc = Constant current from current source in mA
Ib = Current required to bias the internal electronics, typically 1 mA
K = 3.45 ×109. K is the scale factor to convert Farads to picoFarads and Amperes to milliAmperes and a
factor to allow cable capacitance to charge to 95% of the final charge.

WBK14 - Specifications
Name/Function: WBK14, 8-Channel Dynamic Signal

Conditioning Module
Connectors: BNC connector, mates with expansion signal input

on the WaveBook/512; two 15-pin connectors, mate with
expansion signal control on the WaveBook/512; signals via 1
BNC per channel

Channels: 8
Gain Ranges: ×1, 2, 5, 10, 20, 50, 100, 200
Power Consumption: 15 Watts typical
Input Power Range: 10 to 30 VDC
Operating Temperature: 0°C to 50°C
Storage Temperature: 0°C to 70°C
Dimensions: 216 mm wide × 279 mm long × 35 mm high (8.5” ×

11” × 1.375”)
Weight: 1.32 kg (2.9 lb)
ICP Current Source:
 Output Impedance: > 1.0 MΩ @ 20 kHz
 Compliance: 27 V
 Current Levels: 2 & 4 mA
Coupling: AC
 10 Hz High-Pass Filter - Input Impedance: 590K
 0.1 Hz High-Pass Filter - Input Impedance: 10 MΩ

Input Ranges:
 ±5.0 V, ±2.5 V, ±1.0 V, ±500 mV, ±250 mV, ±100 mV, ±50 mV,

±25 mV

Anti-Aliasing Low-Pass Filter:
 Accuracy: ±0.5 dB at the passband center
 Frequency Span: 30 Hz to 100 kHz
 Frequency Settings: 300 kHz / N; N = 3,4,...10000
 Dynamic Range @ 1 kHz: 69 Db
 THD @ 1 kHz: 70 db
 Amplitude Matching: ± 0.1 dB
 Phase Matching: ± 2°
Excitation Source:
 Max. Output Voltage: ± 10 V
 Max. Output Current: 10 mA
 DC Output: ± 5 V
 Sine:
 Frequency: 20 Hz - 100 kHz
 Distortion: < 0.1%
 Amplitude: ± 5 V
 Steps: 256
 Random:
 Spectral Distribution: White, Band-limited
 Amplitude Distribution: Gaussian
 Bandwidth: 20 Hz - 100 kHz
 RMS level: Adjustable in binary steps
External Clock:
 Digital: TTL levels
 Sine: > 500 mV peak

Drive Current Cable Length
Frequency Response to 5% of

Maximum Output Signal Amplitude
(mA) @30 pF/ft (Ft) ± 1 V ± 5 V

2 10 185 kHz 37 kHz
2 100 18.5 kHz 3.7 kHz
2 1000 1.85 kHz 370 Hz
4 10 550 kHz 110 kHz
4 100 55 kHz 11 kHz
4 1000 5.5 kHz 1.1 kHz

3-24 WBK15, WaveBook Expansion Options WaveBook User’s Manual

WBK15 5B Isolated Signal Conditioning Module

Description
The WBK15 module can accommodate eight 5B isolated-input signal conditioning modules for use with the
WaveBook/512. The WaveBook/512 can accommodate 8 WBK15s for a maximum of 64 expansion
channels. The WaveBook/512 scans the WBK15’s channels at the same 1 µs/channel rate that it scans all
WBK analog inputs, allowing it to measure all channels of a fully configured 72-channel system in 72 µs.

Other features of the WBK15 include:
• Built-in power supply that operates from 10 to 30 VDC and can power a full complement of 5B

modules (even with bridge excitation)
• Removable, plug-in screw terminal blocks for convenient connection of 5B modules (each block has 4

terminals per channel for input and excitation-output features)
• On-board cold junction sensing for thermocouple 5B modules
• For each 5B module, 1500 V isolation from the system and from other channels

The following figure shows a block diagram of the WBK15.

WBK15 Block Diagram

Hardware Setup
Physically, the WBK10 is the same size as the WaveBook/512 for convenient mounting. A fastener panel
allows multiple units to be stacked vertically. Screw-on handles are available for portable applications.

CAUTION
If the following two conditions exist simultaneously:
• • ambient temperature >40°C
• • WBK15 is connected to 8 strain-gages and in a configuration of 4 or more

modules;
then you must mount the modules on their side (vertically) to facilitate air flow
through the side plates. Failure to due so could result in thermal-related
problems.

WaveBook User’s Manual WaveBook Expansion Options, WBK15 3-25

Safety Concerns

Voltages above 50 Vrms AC or 100 VDC are considered hazardous. Safety precautions are required when
5B modules are used in situations that require high-voltage isolation from the rest of the system.

The WBK15 is specified for 1500 VDC isolation in a normal environment free from conductive pollutants
and condensation. The 1500 VDC rating requires a proper earth ground connection to the chassis and
treatment of adjacent inputs as potentially hazardous. CE marked units used in the European community
are rated at 600 VDC isolation. The 600 VDC CE isolation specification is based on a double insulation
requirement, and no earth ground is required.

Input cables must be rated for the isolation potential in use. Line voltage ratings are much lower than the
DC isolation values specified due to transients which occur on power lines. Never open the lid unless all
inputs with potentially hazardous voltages are removed. The lid must be securely screwed on during use.

It is strongly recommended that you:
• Properly tighten all chassis screws before system use.
• Properly tighten the screw that retains the 5B module.
• Never plug in or unplug potentially hazardous connections with power applied to any connected

equipment.
• Never attempt to change 5B modules or open the lid with power applied to the WBK15. You could

short out internally exposed circuits and cause damage.
• Never leave a foreign object (conductive or non-conductive) inside the WBK15.

Power

Like the WaveBook/512, the WBK15 contains an internal power supply. The unit can be powered by an
included AC power adapter or directly from any 10 to 30 VDC source, such as a 12 V car battery. For
portable or field applications, the WBK15 and the WaveBook/512 can be powered by the DBK30A
rechargeable battery module. The supply input is fully isolated from the measurement system. If the fuse
requires replacement, it is a 2 A picofuse (Littlefuse #251002). Note:

• For custom power cabling, refer to the DIN5 connector’s pinout in Appendix E.
• For power requirements, refer to Appendix C. You must compute power consumption for your entire

system and (if necessary) use auxiliary or high-current power supplies.

Configuration

The figure shows the board layout within a WBK15. Note the channel number layout for the 5B modules
and the location for plug-in current-sense resistors. Note: Only current-input type modules require the plug-
in resistors. Such resistors must be removed for all other modules.

3-26 WBK15, WaveBook Expansion Options WaveBook User’s Manual

5B Module Insertion/Removal

The 5B modules plug into a daughterboard (×2) on the WBK15’s motherboard. Rubber bumpers on one
side and a tilted daughterboard allow the module to rest at a 5° angle to facilitate insertion and removal.
The adjacent daughterboard has a cut-a-way to allow room for a screwdriver (see figure).

WARNING
Turn off power to the WBK15 and all connected modules and devices before
inserting or removing modules.

CAUTION
Handle the 5B module carefully while inserting pins into the daughterboard. Do
not over-tighten mounting screw.

5B Module Insertion/Removal

WBK15 Board Layout

WaveBook User’s Manual WaveBook Expansion Options, WBK15 3-27

Signal Connection

Signals are connected by screw-terminal signal plugs that plug into the 4-pin jacks on the WBK15’s front
panel (see figure).

Signal Connection Jacks (per channel)

Input signals (and excitation leads) must be wired to the pluggable terminal blocks. Eight 4-terminal blocks
accept up to 8 inputs.

WARNING
Shock Hazard. De-energize circuits connected to the WBK15 before changing the
wiring or configuration.

Terminal blocks are connected internally to their corresponding signal conditioning module. The terminal
blocks accept up to 14-gage wire into quick-connect screw terminals. Each type of input signal or
transducer (such as a thermocouple or strain gage) should be wired to its terminal block as shown in the
figure below. Wiring is shown for RTDs, thermocouples, 20mA circuits, mV/V connections, and for full-
and half-bridge strain gages.

Typical Signal Connections

3-28 WBK15, WaveBook Expansion Options WaveBook User’s Manual

Software Setup in WaveView
Depending on your application, you will need to set several software parameters so that WaveView will
organize data to your requirements. The next figure shows the WaveView Configuration screen and calls
out several parameters of importance to the WBK15. Ater the 5B module type is identified, WaveView
figures out the m and b of mx+b for proper engineering units scaling. Note: if necessary, refer to chapter 5
Using WaveView for more information on using the columns to configure a channel.

Software Function
The Application Programming Interface does not contain functions specific to the WBK15. As needed, you
can refer to related sections of chapters 6 through 12.

WBK15 - Specifications
Name/Function: WBK15 Multi-Purpose Isolated Signal Conditioning Module
Connector: 2 BNC connectors, mate with expansion signal input on the WaveBook/512; two 15-pin connectors, mate with expansion signal

control on the WaveBook/512
Module Capacity: Eight 5B modules (optional)
Input Connections: Removable 4-terminal plugs
 (Weidmuller type BL4, PN 12593.6 or type BLTOP4, PN 13360.6)
Power Requirements: 10 to 30 VDC or 120 VAC with included adapter
 With 8 thermocouple-type modules: 12 VDC @ 0.25 A, 15 VDC @ 0.20 A, 18 VDC @ 0.2 A
 With 8 strain-gage-type modules: 12 VDC @ 0.95 A, 15 VDC @ 0.75 A, 18 VDC @ 0.65 A
Cold-Junction Sensor: Standard per channel
Shunt-Resistor Socket: One per channel for current loop inputs
Isolation
 Signal Inputs to System: 1500 VDC (600 VDC for CE compliance)
 Input Channel-to-Channel: 1500 VDC (600 VDC for CE compliance)
 Power Supply to System: 50 VDC
Dimensions: 221 mm × 285 mm × 36 mm (8.5” × 11” × 1.375”)
Weight: 1.8 kg (4 lb) with no modules installed

Select the 5B module type for
each of the WBK15’s channels

WaveBook User’s Manual WaveBook Expansion Options, WBK15 3-29

WBK20 - PCMCIA/EPP Interface Card
For full speed 1 M-sample/s portable applications, the optional WBK20 PCMCIA interface card cable can
be used to link the WaveBook/512 to a notebook PC.

The WBK20 is simply inserted into a Type II PCMCIA socket (with the label side up) on the notebook PC.
The cable provided is inserted into the end of the PCMCIA card, and the DB-25 socket connector is
connected to the DB-25 plug connector on the WaveBook/512 (labeled “From PC Parallel Port”). No
further hardware configuration is required; all configuration must be performed with the software which is
provided with the WBK20.

Refer to the WBK20 installation manual for detailed information on installing this card.

WBK20 - Specifications
Name/Function: WBK20 PCMCIA/EPP Interface Card
Bus Interface: 8-bit PCMCIA Card Standard 2.1
Dimensions: 5 mm (PCMCIA Type II) card
Connector: DB25F
Transfer Rate: > 2 Mbytes/s
Cable: 2 ft (included)

WBK21 - ISA/EPP Interface Card
For full-speed (1 M-sample/s) desktop applications, the optional WBK21 ISA interface can be used to link
the WaveBook/512 to a desktop PC.

The WBK21 installs into an IBM or compatible computer using any available 16-bit backplane slot. Prior
to installing the card, check to make sure that the card is jumpered correctly for proper operation.

Refer to the WBK21 installation manual for detailed information on installing this card.

WBK21 - Specifications
Name/Function: WBK21 ISA/EPP Interface Plug-in Board
Bus Interface: 16-bit ISA-bus interface
Transfer Rate: > 2.5 Mbytes/s
LPT Address: 378 or 278
LPT Interrupts: 5 or 7
Connector: DB25F
Serial-Port: high-speed 16C550 via DB9
Serial-Port Address: 3F8, 2F8, 3E8, or 2E8
Serial-Port Interrupt: 2, 3, 4, or 5
Connector: DB9M

3-30 WBK61/62, WaveBook Expansion Options WaveBook User’s Manual

WBK61 & WBK62 High-Voltage Adapters
The WBK61 and WBK62 are single-channel high-voltage adapters that can be used with the
WaveBook/512 data acquisition system or WBK10 expansion module. In addition, the WBK61 and
WBK62 can be used with the WBK11, WBK12, and WBK13 cards.

The WBK61 and WBK62 channel output connection is made through a BNC-to-BNC coupler. Each
WBK61 and WBK62 high-voltage adapter has two signal input connections, one for low signal input, and
the other for high signal input. The input channels are resistively isolated from ground, providing for safe
connection of the test device. Series resistors, for both high and low channels, serve as attenuators,
providing a maximum current limit of 100 µA.

The WBK61 and WBK62 include safety-style banana-jacks for the high and low inputs, and 60-inch (152
cm) cables with probe tips and alligator clips for easy input connection. The following figure shows simple
diagrams for each high-voltage adapter.

WBK61/62 Block Diagram

Hardware Setup
Refer to the following steps to connect the high voltage adapter. Refer to the figures on this and the
following page as needed. Note that the term “WBK6x” refers to both the WBK61 and the WBK62 since
the installation of these units is identical.

WARNING

f

High voltages can cause death or severe injury. Do not connect or disconnect the
probes from the WBK61 or WBK62 when leads are connected to a voltage source.

WARNING
Failure to properly connect the WBK61 or WBK62 to the acquisition device
(WaveBook/512, or WBK10) and to ground will result in unsafe operation.

1. Connect the WBK6x (s) to any input channel(s) of the WaveBook/512 or WBK10 using the supplied
BNC-to-BNC coupler (part # CN-110). Refer to the following two figures.

2. If connecting only one WBK6x, connect the green stacking banana plug to analog common (J12) on
the WaveBook/512 or WBK10.

WaveBook User’s Manual WaveBook Expansion Options, WBK61/62 3-31

If connecting two or more WBK6xs, connect the green stacking plug of the first WBK6x to analog
common (J12) on the WaveBook/512 or WBK10. Connect the other WBK6x stacking banana plugs
to the adjacent WBK6x earth ground connections (see figure).

3. If connecting only one WBK6x, connect the green banana plug/alligator clip lead (part # CN-111)
from the WBK6x earth ground connector to the local earth ground.

 If connecting two or more WBK6xs, connect the green banana plug/alligator clip lead (part #
CN-111) from the last WBK6x earth ground connector to the local earth ground. Refer also to step 2
and the above figure.

4. Connect the input leads (part # CA-152) to the WBK6x Input HI and Input LO jacks.
5. Connect the test leads (part # CA-152) to the circuit under test. You may use alligator clips (part #

CN-109) to connect test leads.

If desired, set the applicable WaveBook/512 channel(s) to the appropriate scale by setting the mX+b
function in the WaveView program as discussed in the following section, Software Setup.

3-32 WBK61/62, WaveBook Expansion Options WaveBook User’s Manual

Software Setup in WaveView
Note: Software which makes use of programs other than WaveView may require a similar setup.

Depending on your application, you may need to set software parameters to meet your requirements. The
WaveView Configuration screen includes several important parameters including the “units.” To configure
the units, you must use the Configure Engineering Units pull-down box.

To set the mX + b equation so waveforms and data will be correctly scaled, enter the appropriate m value
as follows:

• for WBK61: set m equal to 200.
• for WBK62: set m equal to 20.

Note: If necessary, refer to the WaveBook/512 User’s Manual (chapter 5, Using WaveView) for more
information on using the columns to configure a channel.

Software Function
The API (Application Programming Interface) does not contain functions specific to WBK61 or WBK62.
Refer as needed to related sections of chapters 6 through 12.

WBK61/62 - Specifications
Name/Function:
 WBK61, High-Voltage Adapter with Probes, 200:1 Voltage Divider
 WBK62, High-Voltage Adapter with Probes, 20:1 Voltage Divider
Number of Channels: 1
Dimensions: 83 mm × 61 mm × 28 mm (3.25” × 2.375” × 1.1”)
Cables: 60” leads with detachable probe tips and alligator clips
Output Connector: BNC socket
Voltage Divider:

WBK61: 200:1 fixed
WBK62: 20:1 fixed

Maximum Voltage
 WBK61: 1000 Vpeak (on either input reference to earth ground)
 WBK62: 100 Vpeak (on either input reference to earth ground)
Maximum Differential Voltage:

WBK61: 2000 Vpeak (if neither input exceeds 1000 Vp rating to earth
ground)
WBK62: 200 Vpeak (if neither input exceeds 100 Vp rating to earth
ground)

Frequency Characteristics: approximates a single-pole frequency
response
-3 dB Bandwidth: 200 kHz minimum

Voltage Ranges: * Note: The asterisk indicates the range is
obtained with the use of a WBK11, WBK12, or WBK13.
WBK61 Effective Ranges:
 Unipolar: +1000V, 500V, 200V, 100V*, 40V*, 20V*
 Bipolar: ±1000V, 500V, 200V, 100V, 50V*, 20V*, 10V*
WBK62 Effective Ranges: Note: For the WBK62 ranges

which are followed by an asterisk, the WaveBook/512 (or
WBK10) will exhibit superior performance with no WBK62
present.

 Unipolar: +100V, 50V, 20V, 10V*, 4V*, 2V*
 Bipolar: ±100V, 50V, 20V, 10V, 5V*, 2V*, 1V*

Measurement Errors:
The following values include total system error, i.e., they

include errors from WaveBook/512, WBK10, WBK11,
WBK12, and WBK13. The value for gain error does not
include offset error.
Gain Error:

0.1% FS (unipolar)
0.2% FS (bipolar)

Offset Error:
0.1% FS (unipolar)
0.2% FS (bipolar)

Operation Guide 4

WaveBook User’s Manual 4-1

This chapter describes WaveBook operation and related concepts of how data acquisition works.
Understanding this material is important for effective use of the WaveBook whether using WaveView,
other ready-to-run software, or custom-written software.

A block diagram of the WaveBook/512 base unit is explained. Later diagrams explain scan and
triggering capabilities. If necessary, you may need to refer other chapters as follows:

• Chapter 1 outlines the system’s basic features.
• Chapter 3 describes features of the WBK expansion options including block diagrams.
• Chapter 5 explains how to use WaveView.

System Overview

WaveBook/512 Block Diagram

Various features can be seen in the WaveBook/512’s block diagram. The analog input signal path
proceeds as follows:

• Each of the 8 pairs of differential signals (one per BNC connector) is buffered and then switched
by the channel-selection multiplexer.

• The selected differential pair is then converted to a single-ended signal by the programmable gain
amplifier (PGA), with a gain of ×1, ×2, ×5, or ×10, respectively corresponding to an input span of
10, 5, 2, or 1 volts.

• The amplified signal is then level-shifted to locate the desired range within the A/D converter's
fixed input range. Two offset settings are available, unipolar and bipolar. The unipolar offset is
used to sample signals that are always positive; the bipolar offset is used for signals which may be
positive or negative. For example, when set for unipolar at a gain of ×5, the input span is 2 volts
and the amplified signal is offset so that input voltages from 0 to +2 volts can be digitized. When
set for bipolar operation, the offset is adjusted so that input voltages from -1.0 to +1.0 volts can be
digitized.

Operation Guide Chapter 4

4-2 WaveBook User’s Manual

• The signal is then switched into the A/D converter where it is digitized (to 12 bits) in 1 µs. The
A/D converter's input can also be switched to the expansion signal input to read one of the 64
possible expansion channels, supplied by up to 8 WBK10 expansion chassis.

• The digitized value is then processed by the digital signal processor (DSP) which corrects the
value for gain and offset errors. If this sample is to be delivered to the PC, then the DSP places
the corrected result into the FIFO data buffer which holds the samples until the PC reads the data.
If the sample is being used for triggering, then the DSP examines the result to determine if a valid
trigger event has occurred.

The WaveBook also includes low-latency analog or TTL-level triggering. The low-latency analog
trigger detector examines the WaveBook input channel 1 to determine if a trigger has occurred. The
selected low-latency trigger is presented to the control and timing circuit that starts the acquisition after
the trigger. The TTL trigger is taken directly from the digital I/O port.

The control and timing circuit and the DSP together coordinate WaveBook activities. Every sample
time, the DSP reads from the scan sequence table and accordingly programs the control and timing
circuit for the next sample. The control and timing circuit waits precisely until the start of the next
sample and then selects the input channel, the PGA gain, the level-shifter offset, and the A/D input
source. It also conveys this information to any attached expansion units and precisely controls the A/D
conversion timing.

The EEPROM holds the calibration information needed for the DSP-based real-time sample correction.
Each WaveBook product (WaveBook/512, WBK10, and WBK11) includes such an EEPROM.

The digital I/O port is read and written by the DSP to transfer bytes of digital data. It may be used as a
simple 8-bit input port or as a 32-address byte-wide I/O port.

The interface circuit connects the WaveBook and any attached printer to the PC. When the WaveBook
is active, the interface holds the printer in a stable state; and when the WaveBook is inactive, the
interface connects the PC to the printer.

Both the WaveBook/512 and the WBK10 can accept the WBK11 8-channel simultaneous-sample-and-
hold card shown in the block diagram below. The SSH card includes an offset-adjusted differential
amplifier, wide-range programmable gain amplifier (PGA), and sample/hold circuit for each of the 8
input channels. It also includes a buffered multiplexer that presents the sampled signal to the A/D and
an EEPROM that holds the calibration constants. Unlike the WaveBook, the PGAs in the SSH cannot
be dynamically configured during data acquisition. Their gain is fixed before samples are taken.

WBK11 Block Diagram

The PGAs in the SSH can each be set to one of seven gains: ×1, ×2, ×5, ×10, ×20, ×50, and ×100,
respectively corresponding to input voltage spans of 10, 5, 2, 1, 0.5, 0.2, and 0.1 V. These input spans
are offset for either bipolar or unipolar operation, just as in a WaveBook without an SSH.

Note that the level-shifter is still used with the SSH and the offset may still be adjusted on a sample-by-
sample basis. Also, the analog trigger detector senses analog channel 1 after it has been amplified by
the PGA. This improves the triggering resolution at high gains.

Chapter 4 Operation Guide

WaveBook User’s Manual 4-3

The WBK10 block diagram shown below is very similar to the analog portion of the WaveBook/512.
Instead of digitizing the signals however, it sends them to the WaveBook through the expansion signal
connectors. The expansion signal output can be disabled to allow multiple WBK10s to share a single
expansion bus. The WBK10, like the WaveBook/512, can accommodate the installation of the
WBK11.

WBK10 Block Diagram

The Acquisition Process
To take measurements with the WaveBook, several steps must be accomplished:

1. Initializing the WaveBook establishes communication between the PC, the WaveBook, and
any attached options and automatically calibrates them according to the settings stored in their
non-volatile EEPROM memory.

2. Configuring an acquisition is a multi-step process that includes specifying the signals to scan
(and their voltage ranges), the trigger source, the number of scans to acquire, and the scan rate.
These steps are described in more detail in the following sections.

3. Starting the acquisition. Once the acquisition has been configured, it must then be started.
Samples will then be collected according to the configured trigger and acquisition modes. These
samples must then be transferred into the PC for display, analysis, or storage.

4. Stopping the acquisition. Once all desired data has been collected, the acquisition must be
stopped. It may be stopped automatically or may need to be stopped by a command.

5. Shutting down the WaveBook. Finally, when WaveBook operation is no longer needed, it may
be shut down.

Programmer’s note: The example programs supplied with the software use commands for a variety of
acquisition types. These programs (explained in chapters 6 to 9), the theory of operation in this
chapter, the enhanced API models chapter, and the command reference chapters are all useful for
writing your own programs.

Initializing the WaveBook
The WaveBook is initialized with the wbkInit command which establishes communication with the
WaveBook through a specified parallel port and interrupt. Before invoking wbkInit, it is often
appropriate to use the wbkSetErrHandler and wbkSetDefaultProtocol commands.
wbkSetErrHandler will catch errors that may occur during initialization.
wbkSetDefaultProtocol will direct the software to use the best protocol, as identified by the
wbktest program, when establishing communication.

Operation Guide Chapter 4

4-4 WaveBook User’s Manual

One-Step Acquisitions
Instead of individually configuring and starting the acquisition, collecting the results, and stopping the
acquisition, all of these steps can be performed with any of the one-step acquisition commands:
wbkRd, wbkRdScan, wbkRdN, wbkRdScanN. These one-step commands greatly simplify the task
of acquiring readings, but they lack the full flexibility of the individual, custom-acquisition commands.

Configuring an Acquisition

Channel Numbering
The analog input channels are identified by channel numbers which are determined by the connections
among the WaveBook and the attached WBK expansion modules and are automatically assigned
without switches or jumpers. The main unit's channels are always referred to as channels 1 through 8.
The first expansion unit (connected directly to the WaveBook) has channels numbered 9 through 16.
Subsequent expansion units add 8 more consecutive channels up to a total of 72 channels. Note:
channel 0 always designates the main unit's 8-bit digital I/O port.

Specifying the Scan
Every acquisition is composed of one or more repetitions of a scan. A scan is a list of some or all of
the input channels and their respective input ranges. Scans can vary in length from a single sample up
to 128 samples. In general, the order in which channels are scanned is arbitrary—they need not be
scanned in any particular order; channels may be duplicated within a scan, or they may be omitted.
Each sample within the scan may be acquired at any range, specified by its gain and offset. Thus, the
scan is configured by using a list of channels to be sampled and their gains and offsets. The
wbkSetScan and wbkSetMux commands are used to configure the scan. Note: some minor
limitations on the arbitrary arrangement of a scan are discussed in a later section.

Specifying the Trigger Source
The trigger is a recorded event to correlate the acquisition with other processes. The trigger may be
used to start the acquisition or to serve as a marker within the acquisition. Every acquisition must be
triggered. If there is no valid external trigger signal, the acquisition should be triggered by the PC.

The WaveBook supports several trigger sources: a software trigger from the PC, the channel 1 input
level, the TTL-trigger input, or a combination of analog input samples. The wbkSetTrigHardware
command is used to choose among the first three trigger sources. The wbkSetTrigAnalog and
wbkSetTrigComplex are used to select the combination of analog input samples as the trigger
source. This "multi-channel trigger" capability and others are described later in this chapter. The
wbkSoftTrig command generates a software trigger. The software trigger takes effect regardless
of what trigger source has been selected and so can be used to force a trigger if the desired trigger has
not arrived.

Specifying the Number of Scans
During an acquisition, several groups of scans are acquired, depending on the selected acquisition
mode. In the N-shot acquisition mode, a single, fixed-length group of scans is collected after the first
trigger. In the N-shot with re-arm mode, a single, fixed-length group of scans collected after each
trigger until the acquisition is stopped. In the infinite post-trigger acquisition mode, a single
indefinitely long group of scans is collected after the trigger until the acquisition is stopped. In the
pre/post-trigger mode, three groups of scans are collected: a fixed-length pre-arm group, an indefinitely
long pre-trigger group, and a fixed-length post-trigger group.

The wbkSetAcq command specifies the acquisition mode and the length of the fixed-length groups.
In the N-shot mode, the length specifies the number of scans to acquire after the trigger. In the infinite
mode, no length need be specified—the acquisition continues until explicitly stopped. And in the
pre/post-trigger mode, both the pre-arm and post-trigger lengths must be specified. The acquisition
modes are further described later in this chapter. Note that in the pre/post-trigger mode, the pre-arm
group length (also called the pre-trigger length) is the guaranteed number of scans that will be collected
before the trigger.

Chapter 4 Operation Guide

WaveBook User’s Manual 4-5

Specifying the Scan Rate
During a scan, the WaveBook always takes samples every microsecond (1 µs). Thus, the minimum
scan period (the fastest scan rate) is 1 µs times the number of channels. The maximum scan period (the
slowest scan rate) is 100 seconds per scan. In the pre/post-trigger acquisition mode, two different scan
rates may be specified, one for before the trigger and one for after.

The wbkSetPeriod and wbkSetFreq commands are used to set the scan rate(s) either in
nanoseconds (ns) per scan, or scans per second, respectively. The scan rate may be set within its limits
to 50 ns precision.

The wbkGetMinPeriod and wbkGetMaxFreq commands retrieve the minimum possible scan
period or maximum possible scan rate based on the scan composition and trigger source. When multi-
channel analog triggering is used, it reduces the maximum pre-trigger scan rate.

The wbkGetPeriod and wbkGetFreq commands retrieve the current actual settings of the scan
period and rate. These may be different from those specified with wbkSetPeriod and
wbkSetFreq because they include the effects of the trigger source, scan composition, and a 50-ns
timebase resolution.

Starting the Acquisition
Before beginning an acquisition, the WaveBook must be configured for which channels to sample, how
often to scan, how many scans to acquire, and the trigger parameters. The wbkArm command starts
the acquisition. If the acquisition mode is pre/post-trigger, then the WaveBook will immediately begin
acquiring the pre-trigger scans. Otherwise, the WaveBook will wait for the trigger before sampling.
After the WaveBook begins taking samples, samples are placed in an output buffer from which they
must be read by the PC.

Transferring Results
When samples are read from the WaveBook, they are placed into a user-supplied data buffer whose
size is limited only by the PC's memory. The wbkBufferTransfer command informs the
WaveBook about the size and location of this buffer. It also specifies if the buffer is circular or linear,
and if the command should wait for the transfer to complete. As data is transferred into the buffer, the
wbkGetBackStat command may be used to retrieve the amount of data that has been placed into the
buffer and the state of the acquisition: active or inactive.

Circular buffers are used when the data is processed as it is being received, or if only the last buffer-
full of data is of interest. As data is transferred into a circular buffer, if it becomes full, the data
transfer continues at the beginning of the buffer, overwriting old data. The wbkBufferRotate
command may be used to arrange a circular buffer into chronological order. Circular buffers are
discussed in more detail later.

Linear buffers are not overwritten. If they become full during transfer, then the transfer stops until a
new buffer is provided.

The wbkBufferTransfer command can wait until the transfer is stopped or can immediately return
to the user's program. In the "background" non-waiting mode, the user's program continues during the
transfer but must periodically check the status of the transfer. In the simpler "foreground" waiting
mode, the user's program cannot perform other operations during the data transfer. Foreground and
background modes are discussed in greater depth near the end of this chapter.

The acquired data may also be automatically written to disk with the wbkSetDiskFile command
which must be invoked before the acquisition is started.

For ease of interpretation, the 12-bit samples are normally transferred as 16-bit words; but for increased
efficiency, the data may be packed to transfer four samples in three 16-bit words. The
wbkSetDataPacking command controls this packing, and the wbkBufferUnpack command
may be used to unpack the received data.

Operation Guide Chapter 4

4-6 WaveBook User’s Manual

Stopping the Acquisition
The wbkDisarm command immediately terminates data acquisition. The N-shot and pre/post-trigger
acquisition modes automatically stop when they are complete; however, both the N-shot with re-arm
and the infinite post-trigger acquisition modes will continue to collect data until they are explicitly
stopped with the wbkDisarm command. The wbkDisarm command may also be used to stop N-
shot and pre/post-trigger acquisitions before they complete.

Shutting Down the WaveBook
After all the acquisitions are complete and the WaveBook is no longer being used, it should be shut
down with the wbkClose command. This helps to guarantee the proper operation of any printer
attached through the WaveBook and assures that the hardware and software are in a consistent, stable
state.

Operation Details

Analog Signal Processing
Each of up to 72 analog inputs are amplified and level-shifted to provide 8 input ranges (or 14 with the
WBK11 SSH). The amplified signals are digitized to at least 11.98 bit resolution (4050 counts) with a
12-bit A/D converter and then corrected to 11-bit accuracy (not counting the sample-to-sample noise)
by the DSP. The total system noise is less than 1-bit RMS at a gain of ×10.

The analog data format is a signed 16-bit number with -32768 (8000h) representing the minimum input
voltage, 0 representing midscale, and 32752 (7FF0h) representing the maximum input voltage. The
four least significant bits are not zero, but instead include fractional bit information from the digital
calibration process. These bits are discarded, after rounding, if the samples are packed for transfer to
the PC. If data packing is not used, then these bits are preserved.

Digital I/O Processing
The WaveBook/512 digital I/O port writes and reads 8-bit bytes to and from 32 addresses. The
pipelined, DSP-based design of the WaveBook restricts the digital I/O port to the following types of
accesses:

• During Acquisition: Read a byte from the digital I/O port at address 0, as the first element in the
scan.

• With Acquisition Stopped: Read and write bytes at any of the addresses under command of the
host PC.

When read as the first element of a scan, the 8-bits that are read are left-justified within the 16-bit
sample. The remaining 8 bits are undefined and may appear as any value. Thus a sample of the digital
inputs is of the form 00XXh to FFXXh where the leftmost 8 bits are read from the port and the
remaining (shown as XX) are undefined.

When the WaveBook is not acquiring data, then the wbkDigRead and wbkDigWrite commands
may be used to read and write bytes at any one of the 32 addresses.

The pinout figure and table describe the digital I/O port signals.

Chapter 4 Operation Guide

WaveBook User’s Manual 4-7

Digital I/O Port Pin Use

Signal Name Pin Number Direction Description
D7
D6
D5
D4
D3
D2
D1
D0,

12
11
10
17
16
15
14
1

input/output digital I/O port data lines

A4
A3
A2
A1
A0

6
5
4
3
2

output digital I/O address lines

EN- 9 output active-low digital I/O enable
RD- 7 output active-low read strobe
WR- 8 output active-low write strobe

TTLTRIG 13 input TTL-trigger input
+5 volts 19, 21 power output 250 mA maximum total

+15 volts 23 power output 50 mA maximum
-15 volts 22 power output 50 mA maximum
Ground 20, 24, 25

If the digital I/O port is only being used to sample the digital inputs during acquisitions, just connect
the digital signals to the digital I/O port data lines. If the digital I/O port is to be used for addressed
I/O, using the wbkDigRead and wbkDigWrite commands, then the digital signals must conform
to the timing requirements shown in the digital I/O port-timing diagram shown below:

During a read from the digital I/O port, the RD- signal is asserted for at least 225 ns. Within 10 ns after
RD- is asserted, the address and enable lines are valid. They remain valid until at least 0 ns after RD-
is unasserted. The data to be read must be presented to the D0-7 data lines within 185 ns after RD- is
asserted and must be held until after RD- is unasserted. If the digital I/O port is used for both input and
output, then the data lines must not be driven for more than 50 ns after RD- is unasserted; but if the
digital I/O port is only used for input, then D0-7 may be driven indefinitely.

During a write to the digital I/O port, the WR- signal is asserted for at least 225 ns. Within 10 ns after
WR- is asserted, the address and enable lines are valid. They remain valid until at least 0 ns after WR-
is unasserted. The data to be written is driven on the D0-7 data lines at least 210 ns before WR- is
unasserted and remains on the data lines at least until 0 ns after WR- is unasserted.

Operation Guide Chapter 4

4-8 WaveBook User’s Manual

Acquisition Composition

Acquisition Mode and the Number of Scans
The acquisition mode determines the number of scans (and their relation to the trigger) that make up an
acquisition. There are 4 acquisition modes: N-shot, Infinite post-trigger, N-shot with re-arm, and
Pre/post-trigger.

N-Shot Acquisition Mode

The N-shot mode, shown below, is the simplest. After the trigger, it collects a fixed number of scans,
from 1 to 100,000,000.

Once the acquisition has been started, with the wbkArm command, the N-shot mode waits until a
trigger occurs. It collects the post-trigger number of scans, as specified by the wbkSetAcq command,
and then stops. No more data will be collected until another acquisition has been started. As shown in
the diagram, each scan consists of one or more samples, taken 1 microsecond apart. The scans are
repeated with the post-trigger scan period that was specified with the wbkSetPeriod or
wbkSetFreq command. The number of scans collected shown as "N" in the diagram may be set
from a minimum of one scan after the trigger to a maximum of 100,000,000 scans.

Infinite Post-Trigger Acquisition Mode

It is also possible to collect an unlimited number of scans after the trigger by using the infinite post-
trigger acquisition mode as shown below:

This mode is identical to the N-shot mode except that the total number of scans is not limited. In the
infinite post-trigger mode, scans are continually taken at the post-trigger scan rate. When the desired
number of scans have been gathered, the wbkDisarm command must be used to terminate acquisition.

N-Shot With Re-Arm Acquisition Mode

The N-shot with re-arm acquisition mode, shown below, is used to collect scans after each trigger.

This mode is also similar to the N-shot mode. It differs in that after the "N" scans have been acquired,
the trigger is re-armed so that another "N" scans will be taken for each subsequent trigger. As in the
infinite post-trigger mode, the wbkDisarm command must be invoked to prevent further acquisitions.

Chapter 4 Operation Guide

WaveBook User’s Manual 4-9

Pre/Post-Trigger Acquisition Mode

The pre/post-trigger mode is substantially different from the preceding modes. This mode acquires
samples both before and after the trigger (the other modes only take samples after the trigger).

In this mode, as soon as the acquisition is started, the WaveBook immediately begins taking scans with
the trigger disabled. The WaveBook guarantees that at least a certain number of scans are collected
before the trigger is recognized. This number is referred to as the "pre-trigger scan-count". When the
pre-trigger scan-count number of scans have been collected, the WaveBook then arms the trigger. The
WaveBook continues scanning at the pre-trigger scan rate until the trigger occurs. When the trigger
does occur, the WaveBook completes the current pre-trigger scan and then begins scanning at the post-
trigger scan rate until the post-trigger number of scans has been collected.

The collected scans can be divided into three groups: the pre-arm scans, the post-arm scans, and the
post-trigger scans. The pre-arm and post-trigger groups are each individually set to a fixed length from
1 to 100,000,000 scans. The post-arm group (the scans after the WaveBook is armed and before the
trigger is detected) may contain any number of scans, depending on how long it takes before the
trigger. Thus, the minimum number of scans collected in this mode is just the sum of the pre-trigger
and post-trigger scan counts; but the maximum number is unlimited. Circular data buffers are often
used to capture this type of data.

Scan Composition
As shown above, every acquisition collects one or more identical scans of the input signals. Each scan
consists of from 1 to 128 samples collected at a rate of 1 microsecond per sample. Each sample of a
scan specifies the channel to be acquired and the gain and offset to be applied to the signal. The
wbkSetMux and wbkSetScan commands are used to specify the scan composition.

In general, the channel number, gain, and offset may be specified arbitrarily for each sample in the
scan, but there are some restrictions:

• The digital input port (channel 0), if read, must be the first channel of the scan.
• The first channel of the scan may not be a channel equipped with a WBK11 (simultaneous

sample/hold) option. If an SSH channel is specified as the first channel of the scan, then the
software will automatically insert a dummy channel, whose result is discarded, as the actual first
channel of the scan, thus reducing the maximum scan length to 127 samples.

• Every reading of a given SSH channel must be at the same gain because the WBK11 cannot
change gain between multiple readings of the same channel. Different SSH channels may be
sampled with different gains, and a single SSH channel may be read with both unipolar and
bipolar offsets, but all samples of a single SSH channel must be made at the same gain.

Scan Period
The scan period is the time from the first channel of one scan until the first channel of the next scan.
The WaveBook/512 supports two different scan periods: the pre-trigger scan period, and the post-
trigger scan period. Because the WaveBook/512 samples at a rate of 1 MHz, the absolute minimum
scan period is just 1 µs times the number of samples in the scan. However, the actual minimum period
may be more:

• If the first channel in the scan is a SSH channel (with a WBK11 installed), then a "dummy"
channel is added to the scan adding 1 µs to the minimum scan period.

• Multi-channel triggering increases the minimum pre-trigger scan period by 1 µs plus 1 µs for
each trigger sample. However, multi-channel triggering does not affect the minimum post-trigger
scan period.

The actual scan period may be any value from the minimum scan period to a maximum of 100 seconds,
and can be set with 50 ns (0.05 µs) resolution. Note: the pre-trigger and post-trigger scan periods may
each be set to any valid value from their respective minimum (which differs if multi-channel triggering
is used) to their maximum of 100 seconds.

Operation Guide Chapter 4

4-10 WaveBook User’s Manual

Triggering Capabilities
Triggering is the use of an external signal or signals to start or synchronize the data acquisition
process. The WaveBook can use four types of trigger signals:

• TTL-level input (either rising- or falling-edge). TTL-level triggering is performed by digital
logic connected to the digital expansion connector.

• Channel 1 analog signal level (rising or falling). Analog triggering is performed by comparator-
based analog hardware connected directly to analog input channel 1.

• Multi-channel combination of measured channel values. Multi-channel triggering is performed
by the WaveBook's Digital Signal Processor (DSP). The DSP samples the specified channels;
and, if programmable conditions are met, a trigger is generated. Multi-channel triggering
examines digitized data, and the trigger latencies are much greater.

• Software command from the PC. The software trigger allows the PC to generate a trigger
without waiting for an external event. This may be used to immediately begin a data acquisition,
or to force an acquisition to occur if the expected trigger did not occur.

Low-latency (Hardware) Triggering
The TTL-trigger input and the channel 1 analog signal comparator output are each connected directly
to hardware trigger circuits to provide low-latency triggering. The WaveBook can respond to a TTL or
analog trigger with a jitter (uncertainty in latency) of no more than 100 nanoseconds.

• Unless pre-trigger data is being collected, the WaveBook responds to the trigger with a latency of
less than 200 ns for TTL and 300 ns for analog.

• If pre-trigger data is being collected, then triggers are not acted upon until the end of the current
pre-trigger scan. This increases the trigger latency and jitter but preserves the specified scan
rates.

When the analog channel 1 trigger is used, the channel 1 analog input signal is compared with a
programmable voltage level to generate an internal TTL-level signal which is true if the analog input is
greater than the programmable voltage level (and false if it is less). When the TTL trigger is used,
then the TTL-level trigger signal from the digital I/O connector is used directly. The resulting TTL-
level signal is then, under program control, examined for either a false-to-true (rising edge), or true-to-
false (falling edge) transition which, when it occurs, is the trigger event.

If the system is ready for a trigger, then the trigger event will be acted upon. If the system is not ready,
because it is not completely configured, or because it is still finishing the previous trigger's action, the
trigger will be ignored. No indication of such an ignored trigger is given.

The low-latency analog trigger compares the analog signal with a programmable voltage source. The
effective range of this voltage source depends on whether or not the WBK11 SSH option is installed.

• Without SSH, the trigger threshold is settable from -5.0 to +9.996 volts with 12-bit (3.7 mV)
resolution, regardless of any channel's gain settings. This gives better than 1% resolution at even
the smallest input ranges (±0.5 or 0-1 volts).

• With SSH, the analog channel 1 signal is first amplified by the SSH programmable gain amplifier
before being compared with the programmable voltage. This allows precise trigger-level
adjustment, even at high gain levels. The analog-trigger comparator threshold-voltage range and
resolution (with SSH) are shown in the following table.

SSH Input Range Trigger Threshold Range Resolution (mV)
0-10 or ±5 -5.0 to 9.996 3.66
0-5 or ±2.5 -2.5 to 4.998 1.83
0-2 or ±1 -1.0 to 1.999 0.73
0-1 or ±0.5 -0.5 to 0.9996 0.366
0-0.5 or ±0.25 -0.25 to 0.4998 0.183
0-0.2 or ±0.1 -0.10 to 0.1999 0.073
0-0.1 or ±0.05 -0.05 to 0.09996 0.0366

The analog trigger circuit has hysteresis which reduces the occurrence of retriggering due to input
noise. The hysteresis without SSH is 25 mV; the hysteresis with SSH is 1/600 of the comparator range.
The effect of this hysteresis (for rising-edge trigger) is shown in the next figure.

Chapter 4 Operation Guide

WaveBook User’s Manual 4-11

A trigger will occur when the analog input rises above the trigger level, but only after the input level
has been below the hysteresis range. If the level momentarily drops just below the trigger level
(perhaps due to noise) and then rises above it again, no extra triggers will be generated—the signal did
not drop below the hysteresis range. After the level drops below hysteresis, it can then again produce a
trigger by rising above the trigger level.

DSP-Based, Multi-Channel Triggering
When the small, hardware-limited latencies of the TTL and analog channel 1 triggers are not required,
the DSP chip may be used to examine the samples from one or more channels and decide if they
constitute a pre-defined trigger condition.

The DSP can sample up to 72 of the input channels and examine each one to determine if they meet
programmed levels for a valid trigger. This multi-channel triggering is a two-step process:

1. The WaveBook DSP examines each of its specified input signals to determine if they are valid
triggers.

2. After all of the channels have been examined, the DSP logically combines the individual triggers
to generate the actual trigger. The DSP may be programmed to generate a trigger if any
individual trigger is valid ("OR") or only if all triggers are valid ("AND")—see figure.

Trigger validity in a multi-channel environment is determined by the logical relationship among 3
elements (slope, duration, and initialization) as discussed in the next section.

Operation Guide Chapter 4

4-12 WaveBook User’s Manual

Eight Trigger Types
The first step in multi-channel
triggering is to examine the input
signals. The WaveBook can examine
each input in 1 of 8 ways to determine
trigger validity. Each of the 8 trigger
types is a combination of 3 elements:
slope, duration, and initialization.

Slope (above/rising or below/falling) sets whether the trigger is valid when the signal is:
• above the trigger level (rising)
• below the trigger level (falling)

Duration (instantaneous or latched) specifies the action to take if the signal level becomes invalid after
it has been valid.

• Instantaneous triggers become invalid as soon as the signal does. Instantaneous triggers are used
to trigger on the coincidence of signals: when two or more signals are simultaneously valid.

• Latched triggers remain valid until the acquisition is complete. Latched triggers are used to
trigger on the occurrence of signals: when two or more signals have already become valid.

The trigger duration only makes a difference in multi-channel "AND" triggering. In multi-channel
"OR" triggering, the WaveBook will be triggered as soon as any channel becomes valid; what happens
when a channel becomes invalid does not matter. In contrast, "AND" triggering waits for all of the
triggers to be valid; and so, latching can be important for rapidly changing signals.

Initialization (level or edge) specifies the sequence necessary for a signal to be a valid trigger.
• Level triggers become valid as soon as they reach or exceed the trigger level, even if they are

already past the trigger level when the acquisition is started.
• Edge triggers first wait until the signal level is invalid. Then they wait for the signal to reach the

trigger level before becoming valid.
Thus, level triggers look for a signal level, whenever it occurs; and edge triggers look for a rising or
falling transition that reaches the trigger level.

Examination of the input signals compares two specified signal levels: the trigger level and the
hysteresis.

• The trigger level determines when the input channel is a valid trigger.
• The hysteresis is the amount by which the channel must differ from the trigger level for the

channel to become invalid.

Above-Level Trigger
 Rising slope
 Instantaneous duration
 Level initialization

This trigger is valid whenever the signal level is above the trigger level and stays valid until the signal level goes below
the hysteresis range. In the figure, the channel trigger is valid during the 2 shaded intervals. Whether this triggers the
WaveBook depends on the type of multi-channel triggering ("AND" or "OR") and on the state of the other trigger
channels. If multi-channel triggering is configured for "OR", then the WaveBook will be triggered when the signal first
rises above the trigger level; if the WaveBook is ready for a new trigger, then it will also be triggered the second time the
signal rises above the trigger level. If multi-level triggering is configured for "AND", then the WaveBook will not be
triggered until every specified trigger channel is valid. If all other trigger channels are valid, the WaveBook will be
triggered when the signal reaches the shaded region; but if some channels are not valid, this channel will have no effect.

Below-Level Trigger
 Falling slope
 Instantaneous duration
 Level initialization

This trigger is valid whenever the signal level is below the trigger level and stays valid until the signal level goes above
the hysteresis range (the reverse of above-level triggering). As with all multi-channel trigger types, the WaveBook's
actual trigger depends on the combination of this trigger with the other channels' trigger states.

Trigger Type Slope Duration Initialization
Above-level Rising Instantaneous Level
Below-level Falling Instantaneous Level
Above-level-with-latch Rising Latched Level
Below-level-with-latch Falling Latched Level
Rising-edge Rising Instantaneous Edge
Falling-edge Falling Instantaneous Edge
Rising-edge-with-latch Rising Latched Edge
Falling-edge-with-latch Falling Latched Edge

Chapter 4 Operation Guide

WaveBook User’s Manual 4-13

Above-Level-With-Latch Trigger
 Rising slope
 Latched duration
 Level initialization

In this type of triggering, the channel becomes valid when the signal level rises above the trigger level and stays valid
until the acquisition is complete and the WaveBook is re-armed.

Below-Level-With-Latch Trigger
 Falling slope
 Latched duration
 Level initialization

The channel becomes valid when the signal level rises above the trigger level and stays valid until the acquisition is
complete and the WaveBook is re-armed (the reverse of above-level-with-latch triggering). Latched triggers are often
used in multi-channel "AND" triggering, where the WaveBook is not triggered until all trigger channels are valid. After a
latched trigger becomes valid, it stays valid (waiting for the other triggers to become valid) until the WaveBook is
triggered and the acquisition completes. If the trigger is non-latched instead latched, the channel may not stay valid and
the WaveBook will not trigger until the channel becomes valid again and all channels simultaneously reach their trigger
levels. In other words, latched triggering is used to trigger after something has occurred, but non-latched
triggering is used only during the simultaneous occurrence of desired signal levels. It is possible to combine
different trigger types in a single multi-channel trigger. For example, the WaveBook could trigger when channel 3 is
below 0.9 volts after channel 2 has gone above -1.3 volts, by configuring channel 3 for below-level triggering and
channel 2 for above-level-with-latch triggering.

Rising-Edge Trigger
 Rising slope
 Instantaneous duration
 Edge initialization

This trigger becomes valid after the signal level has been below the hysteresis range and then goes above the trigger
level. This trigger becomes invalid when the signal level goes below the hysteresis range. Unlike above-level triggering,
the channel cannot become valid until the signal level first goes below the hysteresis range. This prevents the false
triggering that would occur if the signal is above the trigger level at the start of the acquisition.

Falling-Edge Trigger
 Falling slope
 Instantaneous duration
 Edge initialization

This trigger is the reverse of the rising-edge trigger: the trigger becomes valid after the signal level has been above the
hysteresis range and then goes below the trigger level. This trigger becomes invalid whenever the signal level goes above
the hysteresis range. This prevents the false triggering that would occur with below-level triggering if the signal was
below the trigger level at the start of the acquisition.

Rising-Edge-With-Latch Trigger
 Rising slope
 Latched duration
 Edge initialization

This trigger becomes valid like a rising-edge trigger: when the signal level goes above the trigger level after first being
below the trigger range. However, the rising-edge-with-latch trigger does not become invalid, regardless of the signal
level, until the acquisition is complete. Rising-edge-with-latch is used to trigger after the channel has reached the trigger
level, rather than just while the channel is above the trigger level.

Falling-Edge-With-Latch Trigger
 Falling slope
 Latched duration
 Edge initialization

This trigger is the reverse of the rising-edge-with-latch trigger: the trigger becomes valid after the signal level has been
above the hysteresis range and then goes below the trigger level. The trigger remains valid until the acquisition is
complete.

Operation Guide Chapter 4

4-14 WaveBook User’s Manual

Trigger Latency and Jitter
• Trigger latency is the time duration between the occurrence of the valid trigger and the start of

the triggered acquisition of the data.
• Trigger jitter is the variation of the latency: the amount of time the latency can vary from trigger

to trigger.

Latency and jitter depend on both the trigger source and the acquisition mode.

As discussed above, the WaveBook has different acquisition modes. Post-trigger modes (N-shot, N-
shot with re-arm, and infinite-post-trigger) collect scans only after the trigger has occurred. They are
different from the pre/post-trigger mode which collects scans both before and after the trigger. This
difference affects the trigger latency and jitter.

In a post-trigger mode, the WaveBook is not scanning while waiting for the trigger. Thus, it is free to
respond to the trigger as soon as it occurs. This minimizes the latency and jitter.

In the pre/post-trigger mode, pre-trigger data is being collected while the WaveBook waits for the
trigger, and the WaveBook will not respond to a trigger until the current scan is complete. The first
scan after the trigger is separated from the last scan before the trigger by the pre-trigger scan period.
Thus, all the scans up through the one immediately following the trigger are collected at the pre-trigger
rate, and all the subsequent scans are collected at the post-trigger rate. This preserves the integrity of
the acquisition timebase as shown in the figure below:

The time needed to complete the final pre-trigger scan is part of the trigger latency; and so, in the
pre/post-trigger mode, the trigger latency may be greatly increased.

Not only do the trigger latency and jitter depend on the pre- vs post-trigger type of acquisition, they
also depend on the trigger source: software, TTL, analog, or multi-channel. The following table gives
the latency and jitter for each of the different trigger sources and acquisition modes.

Acquisition Type Trigger Source Max. Trigger Latency Trigger Jitter Notes
Software 100 µs + T 100 µs + T a, c

Pre-trigger TTL 200 ns + T 50 ns + T c
Analog (channel 1) 300 ns + T 50 ns + T c
Multi-channel 2 * T - NS µs T c, d

N-Shot, Software 100 µs 100 µs a
N-Shot w/ re-arm, TTL 200 ns 50 ns
or infinite-post- Analog (channel 1) 300 ns 50 ns
trigger Multi-channel 2 * NC + 3 µs NC +2 µs b
(a) Software trigger latency and jitter depend greatly on the host computer's speed, operating system, and

printer-port protocol. Most systems should take much less than 100 µs.
 (b) NC is the number of samples used for multi-channel triggering, from 1 to 72, as specified by the trigger

configuration.
 (c) T is the pre-trigger scan period.
 (d) NS is the number of samples in a scan including, if present, the first "dummy" sample, from 1 to 128.

Chapter 4 Operation Guide

WaveBook User’s Manual 4-15

Data Packing
Normally, the WaveBook/512 transfers each of its 12-bit readings as a 16-bit word which can be easily
interpreted by the PC. However, to increase the data transfer efficiency by 25%, 4 readings can be
packed into 3 words.

Advantages of Packed Data:
• Less Data to Transfer: By packing 4 samples (12-bit) into 3 words (16-bit), the amount of data

transferred from the WaveBook/512 to the PC is reduced 25%, thus reducing the amount of time
required to transfer the data by a similar amount. This can increase the maximum data acquisition
rate. For example, if the PC's EPP port is limited to 800 KB/sec, then without packing, the
maximum average data acquisition rate will be 400 Ksamples/sec, but with packing it will
increase to 533 Ksamples/sec.

• Less Data to Store: As packed data takes fewer words, it effectively increases the buffer size. For
example, the 65536-word internal data buffer in the WaveBook/512 can hold 87380 samples of
packed data instead of only 65536 samples of unpacked data. Similarly, the PC's memory is used
more efficiently when storing packed data.

• Less Data to Archive: Storing packed data to disk is both faster (because there are fewer words to
transfer) and more economical (the disk files are smaller) than storing unpacked data.

Disadvantages of Packed Data:
• Extra Processing Steps: The packed data must be unpacked before it can be interpreted,

increasing the complexity of programs which use packed data.
• Loss of Resolution: Even though the WaveBook/512 is a 12-bit device, it uses 16-bit arithmetic

internally to compensate the digitized data. Rounding these results to 12 bits, so they can be
packed, slightly reduces the accuracy (by less than ½LSB).

• Special Cases: If an acquisition is not a multiple of 4 samples long, then the last, 3-word, packed
data group will only be partially filled with the final sample(s). These end conditions must be
taken into account when directly processing packed data.

Packed-Data Format
The packed-data format packs four 12-bit samples into three 16-bit
words. To do so, the first sample is broken into three 4-bit nibbles, H,
M, and L, where H is the most-significant (high) nibble, M is the middle
nibble, and L is the least-significant (low) nibble. These 3 nibbles are
then combined with the three subsequent samples to form three 16-bit
words (see table). The wbkSetDataPacking function is used to enable/disable data packing.

The next figure shows how 4 scans of 3 samples each are transferred to the PC. If data packing is not
used (1st diagram), each of the 12 samples occupies a separate 16-bit word of memory. If data packing
is used (2nd diagram), the samples are packed into 9 words without regard for the scan boundaries.
Each group of 3 words includes 4 consecutive samples which may come from more than one scan.

Bits
Word 15-12 11-0
1 1L Sample 2
2 1M Sample 3
3 1H Sample 4

Operation Guide Chapter 4

4-16 WaveBook User’s Manual

Data Transfer
Once an acquisition has been started, the WaveBook/512 will begin acquiring samples either
immediately (if pre-trigger is enabled) or after the trigger. These samples are initially placed into the
WaveBook's internal 64K-word first-in-first-out (FIFO) buffer. The PC must retrieve the samples from
the FIFO soon after acquisition starts; otherwise, the FIFO will become full, samples will be lost, and
an error will be indicated. The retrieved samples are transferred into data buffers in the PC's memory.

Time-outs
While the PC is controlling and transferring data from the WaveBook, the application program in the
PC is unable to execute and is temporarily suspended. To keep the application program from hanging
indefinitely, the WaveBook includes a timer which will stop WaveBook operation with an error if the
application program has been suspended for more than a specified number of milliseconds. The time-
out interval is set with wbkSetTimeout.

Buffer Size
The wbkBufferTransfer command retrieves the samples from the WaveBook into a buffer in the
PC's memory. wbkBufferTransfer takes many arguments which are described in full in the
command reference chapter. Among those are the ones that describe the buffer:

• buf - the address of the buffer that will hold the samples
• scanCount - the size of the buffer, in scans
• cycle - controls overwriting of old samples

The buffer must have room for at least
scanCount scans. If data packing is not used,
then each sample takes one 16-bit integer, and the
buffer must be at least (samples-per-
scan)*scanCount words long (see figure).

With data-packing, every 4 samples take 3 integers and the buffer must be at least (3/4)*(samples-per-
scan)*scanCount words long. Also with data-packing enabled, the buffer must hold a whole number of
4-sample groups of packed data—the number of samples in the buffer, (samples-per-scan)*scanCount,
must be a multiple of 4. See table for some examples of buffer sizes:

Scan Length
(samples-per-scan)

Scans per Buffer
(scanCount)

Unpacked Buffer Length
(16-bit words)

Packed Buffer Length
(16-bit words)

1 1 1 —
2 2 —
3 3 —
4 4 3
5 5 —
6 6 —
7 7 —
8 8 6

2 1 2 —
2 4 3
3 6 —
4 8 6

3 1 3 —
2 6 —
3 9 —
4 12 9
5 15 —
6 18 —
7 21 —
8 24 18

4 1 4 3
2 8 6
3 12 9
4 16 12

127 1 127 —
2 254 —
3 381 —

Chapter 4 Operation Guide

WaveBook User’s Manual 4-17

4 508 381
5 635 —
6 762 —
7 889 —
8 1016 762

128 1 128 96
2 256 192
3 384 288
4 512 384

The cycle argument is a Boolean (true or false) that specifies if, once the buffer is full, new data is
allowed to overwrite old data that is already in the buffer.

• If cycle is false, the buffer is used as a linear buffer—samples are stored into the buffer until the
buffer is full and the transfer stops.

• If cycle is true, the buffer is used as a circular buffer—once the buffer is full, the transfer begins
again at the beginning of the buffer, overwriting the old data.

When the WaveBook transfers data into a linear buffer, it places the first sample into the first word of
the buffer, and continues transferring data until the buffer is full. Once the buffer is full, the transfer is
stopped, and no more samples are written to the buffer. This preserves every sample from the
WaveBook; none are ever overwritten in a linear buffer. Of course, even with the transfer stopped, the
WaveBook, as configured by the acquisition mode and scan count, may still be acquiring more scans.
If more scans are taken, they are stored in the WaveBook's internal buffer until they can be transferred
to the PC. Another wbkBufferTransfer command must be used to transfer them into the PC. If
the transfer is not restarted, or is not restarted soon enough, the acquired scans will eventually overflow
the WaveBook's internal buffer and samples will be lost.

The following diagram shows the scans as they are transferred into the first two of several linear
buffers:

When the WaveBook transfers data into a circular buffer, it continues transferring until the acquisition
is complete. If the amount of data acquired exceeds the capacity of the buffer, then the oldest samples
in the buffer are overwritten. As more samples are acquired, more and more of the buffer is
overwritten so that the most recent samples are always kept in the buffer. For example, if an
acquisition is configured for 1000 scans and the buffer holds only 60 scans, then the buffer will initially
be filled with scans 1 through 60. Then, scan 61 overwrites scan 1; scan 62 overwrites scan 2; and so
on until scan 120 overwrites scan 60. At this point the end of the buffer has been reached again—so,
scan 121 is stored at the beginning of the buffer, overwriting scan 61. As shown below, this process of
overwriting and re-using the buffer continues until all 1000 scans have been acquired.

When the acquisition is complete, the buffer holds only scans 941 through 1000. All of the preceding
scans have been overwritten. At this point the buffer has the following contents:

In this case, because the total number of scans is not an even multiple of the buffer size, the oldest scan
is not at the beginning of the buffer and the last scan is not at the end of the buffer. For easier
processing, the wbkBufferRotate command can arrange the buffer so that the oldest scan is at the
beginning of the buffer (and the last is at the end). wbkBufferRotate only works on unpacked data

First Buffer Next Buffer
Scan
Number Õ 1 2 3 … 60 61 62 63 … 120 …

1st Data Set
Buffer Position 1 2 3 … 39 40 41 42 ... 58 59 60
Scan 1 2 3 ... 39 40 41 42 ... 58 59 60
2nd Data Set
Buffer Position 1 2 3 ... 39 40 41 42 ... 58 59 60
Scan 61 62 63 ... 99 100 101 102 ... 118 119 120
3rd Data Set
Buffer Position 1 2 3 ... 39 40 41 42 ... 58 59 60
Scan 121 122 123 ... 159 160 161 162 ... 178 179 180

Final Data Set
Buffer Position 1 2 3 ... 39 40 41 42 ... 58 59 60
Scan 961 962 963 … 999 1000 941 942 … 958 595 960

Operation Guide Chapter 4

4-18 WaveBook User’s Manual

(one sample per 16-bit word). If the buffer were transferred as packed data, then
wbkBufferUnpack must first be used to unpack the buffer. Once wbkBufferUnpack, if
necessary, and wbkBufferRotate have been used, the buffer will be unpacked with the scans in
their natural order from oldest to newest (first to last).

Overlapped Execution
During data acquisition, it is often desirable to continue execution of the application program while the
acquisition continues automatically in the background. wbkBufferTransfer controls this
overlapped execution. wbkBufferTransfer configures data transfers to be either foreground
transfers, in which the wbkBufferTransfer command waits for the transfer to complete before
returning to the application program, or background transfers, in which the command returns as soon as
possible to the application. The overlapped operation is controlled by the "foreground" argument to
wbkBufferTransfer which, if true, specifies that wbkBufferTransfer is to wait for the
transfer to complete or, if false, specifies that wbkBufferTransfer is to return immediately.

Foreground transfers are the simplest to use. Once a foreground transfer is started with
wbkBufferTransfer, that command waits for the transfer to complete before returning control to
the application program. This allows the application program to assume that the data is in the buffer
and is ready to be analyzed or stored.

Background transfers are more complicated. Once a background transfer is started with
wbkBufferTransfer, that command returns immediately to the application program. The
application cannot assume anything about the contents of the buffer. Instead, it must use the
wbkGetBackStat command to retrieve the state of the buffer and determine if it contains any data to
be processed.

In spite of this added complexity, background transfers are often used because they allow the
application program to continue execution during the transfer. Background operation allows the
application to continue with other operations such as processing previously acquired data and
responding to other events, including user input, during the acquisition. This capability can greatly
improve the efficiency and usability of the application.

The following diagram shows how the PC directs its attention during foreground and background
transfers:

The choice of the appropriate combination of foreground and cycle operation along with the acquisition
mode (as set by wbkSetAcq) depends on way the application needs to process the received samples.
The four combinations of foreground and cycle (foreground-linear, foreground-circular, background-
linear, and background-circular) are each appropriate for a different approach to data processing. The
following sections describe each of these approaches and then direct-to-disk transfers.

Chapter 4 Operation Guide

WaveBook User’s Manual 4-19

Foreground-Linear Transfers
Foreground transfers into a linear buffer simply transfer data until the buffer is full or until the
acquisition stops. Once this occurs, wbkBufferTransfer returns, and the error code, return count,
and active flag may be examined to decide what further action (if any) is necessary. The return count
holds the number of scans that were transferred. This will be the same as the size of the buffer unless
the acquisition stopped before the buffer was filled. The active flag is non-zero if the buffer was not
large enough to hold the entire acquisition and the acquisition is still active. In this case, another
wbkBufferTransfer must be invoked to transfer the additional samples. If the active flag is zero,
then the acquisition is complete and the buffer holds the number of scans indicated by the return count.
Because the buffer is a linear buffer, the earliest scan is at the beginning of the buffer and the last scan
is closest to, or at, the end of the buffer.

If the samples were data-packed for transfer (as controlled by wbkSetDataPacking, then the data
in the buffer will be in the packed-data format and may be unpacked using wbkBufferUnpack.

Foreground linear mode may be used with any of the acquisition modes (N-shot, N-shot with re-arm,
pre/post-trigger, and infinite post-trigger) but is most useful in N-shot mode.

In N-shot mode, each acquisition collects exactly N (the post-trigger count) scans. If the buffer is large
enough to hold all of the scans, then when wbkBufferTransfer returns, the entire acquisition will
be ready in the buffer (assuming no error occurred). The scans may then be unpacked, if necessary,
and analyzed or stored as desired.

In all other acquisition modes, wbkBufferTransfer will return when the buffer is full, but the
acquisition will, usually, not yet be completed. Thus, samples will continue to be acquired, and the
application program may not have much time before it must invoke another wbkBufferTransfer
to continue the sample transfer and avoid losing data.

Foreground-Cycle Transfers
Cycle mode is used in foreground transfers to collect only the last buffer-full of data. When the
wbkBufferTransfer command returns, the application program only has access to as many of the
last scans as fit in the buffer. For example, if the buffer is large enough to hold 100 scans, the
foreground cycle transfer will complete with the buffer holding the last 100 acquired scans (assuming
that at least 100 scans were acquired). This type of transfer is most often used in pre/post-trigger
acquisitions. In pre/post-trigger acquisitions, the actual number of scans acquired depends on the
timing of the trigger, but is at least the total of the specified number of pre-trigger and post-trigger
scans. By using a buffer that is just large enough to hold those scans then, when the acquisition
completes, the buffer will hold just the scans of interest.

Foreground cycle transfers may also be used in the N-shot acquisition mode to capture the scans that
occur sometime after the trigger. For example, if the acquisition were configured for 1000 scans after
the trigger, and the buffer held only 60 scans, then, after the acquisition, the buffer would hold just
scans 941 through 1000, and the preceding scans would have been overwritten. Foreground cycle
transfers may also be used for direct-to-disk acquisition (discussed at the end of this chapter).

When a circular buffer is used with any acquisition mode, the scans are generally out of chronological
order at the completion of an acquisition. As discussed above, wbkBufferUnpack and
wbkBufferRotate may be needed to arrange the buffer into its natural order from oldest to newest
(first to last).

Note: the foreground-cycle mode should never be used with the infinite acquisition modes (N-shot with
re-arm and infinite post-trigger) as the acquisition would never complete, so wbkBufferTransfer
would never return, and the application program would be stuck acquiring data until a time-out error
occurs.

Operation Guide Chapter 4

4-20 WaveBook User’s Manual

Background-Linear Transfers
Background transfer into a linear buffer is similar to foreground transfer but with the advantage that the
application program continues execution while the data is being transferred. This allows the
application program to process one buffer while another is being acquired. While the practical amount
of processing depends strongly on the PC performance and the total sample rate, the background mode
makes multiple buffer acquisitions more feasible.

In a typical application, a long acquisition is transferred using background linear transfer into two
buffers, A and B, in an alternating ping-pong fashion. This type of acquisition is very useful when the
total amount of data to be processed exceeds the available buffer space and may be appropriate with
any of the acquisition modes: N-shot (when N is large), N-shot with re-arm, infinite post-trigger, and
pre/post-trigger.

In this way, an infinite amount of data can be processed with two data buffers. As each buffer is filled
it may be unpacked, if necessary, with wbkBufferUnpack before further processing. A ping-pong
transfer can be implemented with the following procedure (see figure):

1. Initialize. The acquisition is configured and
started; wbkBufferTransfer is invoked
to transfer the data into buffer A.

2. Wait for A. The program waits until buffer A
is full using wbkGetBackStat.

3. Start B. The program uses
wbkBufferTransfer to start transferring
data into buffer B.

4. Process A. The contents of buffer A are
processed (analyzed and/or stored).

5. Wait for B. The program waits until buffer B
is full using wbkGetBackStat. If the
transfer is done, then buffer B should be
processed and the procedure is complete.

6. Start A. The program uses
wbkBufferTransfer to start transferring
data into buffer A.

7. Process B. The contents of buffer B is
processed (analyzed and/or stored). The
program then repeats these steps starting with
"Wait for A" until the entire acquisition has
been processed.

Background-Cycle Transfers
Background cycle transfers may be used to allow processing to continue while acquiring just the last
buffer-full of data (like foreground cycle transfers), or they may be used to allow processing of all the
data while it is being acquired (like background linear mode). It may also be used to allow the
application to continue during direct-to-disk transfers.

If only the final buffer of data is of interest, then background cycle mode can be used just like
foreground cycle mode, but instead of the data being ready when wbkBufferTransfer returns, the
application program will continue while the data is acquired and can use wbkGetBackStat to know
when the acquisition is done. The application can then use wbkBufferUnpack, if needed, and
wbkBufferRotate to process the data.

If all of the data is of interest, then wbkGetBackStat can be used to monitor the acquisition's
progress. Once some of the buffer has been filled, it may be processed while the remainder of the
buffer is being filled. Then, once the first part has been processed and some of the remainder filled, the
new data may be processed while the old data is overwritten. The alternating portions are processed
until the acquisition is complete.

Chapter 4 Operation Guide

WaveBook User’s Manual 4-21

Direct-to-Disk Transfers
The WaveBook can automatically copy transferred data to a disk file. If such a direct-to-disk transfer
is enabled, with the wbkSetDiskFile command, then the WaveBook copies the data to the disk
after it has been transferred into the data buffer in the PC's memory. Direct-to-disk is easiest to use
with foreground circular-buffer transfers, but it can be used with background transfers or linear buffers.

When used with a foreground circular-buffer transfer, the direct-to-disk function is completely
automatic: all of the acquired data is automatically written to the specified disk file. Background
circular-buffer transfers are somewhat more difficult: samples are written to disk only when
wbkGetBackStat is invoked. The application program must invoke wbkGetBackStat often
enough to allow the data to be written to disk before it is overwritten by new samples and lost.

Direct-to-disk may also be used with foreground or background linear-buffer transfers; but in these
cases, the application program must start new transfers as each linear buffer is filled.

Regardless of the type of transfer, the data is written to disk in the same format: a continuous stream of
data words, exactly as received from the WaveBook. If data packing is enabled, then the disk file will
contain packed data (otherwise, unpacked data). The file does not contain any other type of
information. If any other information needs to be stored, such as the scan composition or rate, then the
program should write that information to the file before starting the acquisition and configure the
direct-to-disk transfer to append to the data file.

Once the acquisition is complete, the application program can analyze the stored data by reading the
file and, if necessary, unpacking the data.

Operation Guide Chapter 4

4-22 WaveBook User’s Manual

- Notes

Using WaveView 5

WaveBook User’s Manual 5-1

WaveView is a graphical Microsoft Windows application for operating the WaveBook/512 hardware.
No programming knowledge is required. WaveView capabilities include:

• Setting up all analog or digital input parameters, then acquiring and saving the data to a disk file
or viewing the data in real time.

• Transmitting data to other Windows applications, such as spreadsheets and databases.
• Configuring and operating any connected expansion chassis.
• Launching PostView, an independent application that allows you to graphically view waveforms

recorded by WaveView.
Note: WaveView comes in 2 formats (16-bit and 32-bit). Both versions work similarly and have only
minor differences as noted in the text.

Application Startup

Loading WaveView
The installation disks that came with the system contain the WaveView program and its associated
files. If the software has already been loaded, there is a directory (Win3.1) or folder (Win95/NT)
called wavebook on your PC’s hard drive; and WaveView is ready to run from your Windows
environment (via program group or Start menu). If the software has not yet been loaded, follow the
software installation procedures in chapter 2.

Starting WaveView
To launch the application, double click on the WaveView icon in the WaveView program group (or
from the Start menu). WaveView holds user-configured parameters which can be saved to disk. The
default configuration filename is “WAVEVIEW.CFG”. When WaveView starts up, it proceeds to
search the working directory for this file.

• If the default configuration file is found, all the required setup information will be extracted from
it, and the application’s main window will open.

• If the default configuration file is not found, WaveView will try to connect the WaveBook
hardware with the following default parameters: Printer Port LPT1, Interrupt Level 7, and 4-bit
Standard Protocol. If this fails, the program tries LPT2 and Interrupt Level 5.

• If connection is established, the application’s main window will open with the default setting.
• If the options above fail, a dialog box will appear asking whether or not you want to open a

different setup file (or to retry establishing communications, select another device, load a
configuration file, or exit WaveView).

16-bit WaveView 32-bit WaveView
• If no user-configuration file is found or no communication established, a dialog box prompts you

to choose a real WaveBook or a simulated WaveBook (or select among available devices).

16-bit WaveView 32-bit WaveView

Using WaveView Chapter 5

5-2 WaveBook User’s Manual

Simulated WaveBook
If the hardware is not available or you just want to try out the software, select Simulated WaveBook.
The Simulated WaveBook allows various functions of the software to be exercised without any
hardware installed.

WaveBook Attached
If the WaveBook/512 hardware is connected and switched on,
select WaveBook Attached. An additional dialog box will
appear, prompting you to provide the following parameters:

• Printer Port - LPT1, LPT2, LPT3, or LPT4. Select the
port connected to the WaveBook. The default is LPT1.

• Interrupt Level - 3, 4, 5, 6, or 7. Select the interrupt
level used by the selected LPT port. The default is 7.

• Port Protocol - The available options are: 8-Bit
Standard, 4-Bit Standard, FarPoint F/Port EPP, 82360 SL
EPP, SMC 37C66 EPP, EPP BIOS, and FAST EPP.

The choice of protocol depends on the hardware you are using. If you have already run the WBKTest
software utility (or Test Hardware for 32-bit version), you should have determined if your particular
hardware is compatible with the WaveBook. Select one of the above protocols based on those results.
The default protocol is 8-Bit Standard.

WaveView will attempt to find the WaveBook/512 at the specified port.
• If the hardware is found, the application’s main window will open.
• If no hardware is found, you will be alerted and given another chance to select parameters.
• If the hardware still cannot be identified by the software, exit WaveView and try the WBKTest

utility program (or Test Hardware from the control panel applet for 32-bit WaveView).

WaveView Main Components
The WaveView program has 3 main components: The Configuration screen, the Scope screen, and the
Direct-to-Disk screen. The next figure shows a sample of the WaveView Configuration screen.

Menu Bar

 Tool Bar

Input Channel
Configuration
Spreadsheet

WaveView interrogates the hardware after it starts up to see what options and expansion modules are
actually connected to the WaveBook. The total number of channels displayed on the configuration
menu corresponds to the number of channels connected.

Chapter 5 Using WaveView

WaveBook User’s Manual 5-3

The next figure shows the WaveView Scope screen. Two channels are displayed in this example (up to
8 channels can be displayed at a time).

 Menu Bar

 Tool Bar

 Scope Mode
 Display

The next figure displays the WaveView Direct-to-Disk screen.

 Menu Bar

 Tool Bar

Data Destination
 Box

Using WaveView Chapter 5

5-4 WaveBook User’s Manual

Sample Acquisition Using WaveView
The following procedure takes you through the steps involved in performing a simple acquisition.
Note: in the simulated WaveBook mode, you can explore this guided tour in varying degrees of depth
by reading ahead to other menu options as desired.

1. From the Windows environment, click on the WaveView icon. The program starts and the
configuration screen is displayed.

2. Start by configuring channel 1. Double click the mouse on the box next to channel 1 in the “On”
column. The box will change from a “No” to a “Yes”.

3. Move to the “Range” column for channel 1, and click on the box. Move up to the “Select
Range” box, and click on it. A drop-down menu appears showing the available range selections.
Click on the sixth selection (± 0.10 V). This choice now appears in the “Range” column for
channel 1.

4. Move to the “Label” column for channel 1. Click on the box. Type in CHAN 1 for the label of
this channel.

5. Move to the “Units” box for channel 1. Double click on the box to change the setting from V to
mV. There are only two selections; repeatedly clicking the box toggles the selections.

6. Now, three more channels will be configured using steps similar to those above. Use the settings
in the table.

7. Now that the selections for the “Input Channel
Configuration” window have been completed, move to
the menu bar and click on “Window”. When the
selections appear, click on “Scan/Trigger
Configuration”. Move to the “Scan Count” window. Click on the “Pre-Trigger” box, and enter
1000 for the number of pre-trigger scans to take.

8. Next click on the “Post-Trigger” box, and enter 5000 for the number of scans to take after the
trigger event.

9. The Scan Rate is set next. Move the mouse to the “Convention” box, and click on the
“Frequency” button. Next move to the “Pre-trigger” box, and select 50 kHz. Likewise in the
“Post-trigger” box, select 50 kHz.

10. Select “Immediate” from the “Trigger” selection box.
11. Move again to the menu bar, and click on “Window”. When the selections appear, click on

“Scope”. The Scope screen will display.
12. Next, the screen needs to be configured to display 4 charts since 4 channels were previously

selected for the acquisition. Click on the “Charts” menu item on the Scope screen. When the
selections appear, click on “Number of Charts”. A flyout appears showing a selection of up to 8
channels for display. Click on 4.

13. The system is now set to start collecting data. Click on the “One Shot” button.
14. The system has now collected 1000 pre-trigger scans and 5000 post-trigger scans.
15. If the waveforms need to be scaled, click on the “Scale All Charts” button. All 4 waveforms

should be visible at this time.
16. The waveforms may be examined at any point along the timeline by using the scroll-bar at the

bottom of the screen.
17. The number of scans displayed in the window may be varied by using the “Zoom In” or “Zoom

Out” buttons.
18. To store the acquisition data to disk, click on the “Save Data File” button and give the file a

name.
19. Return to the WaveView Configuration screen by clicking on the “Go to Config Window”

button.
20. Once back in the Configuration window, the saved data may be examined using the “PostView”

utility. Click on the “Window” menu item. When the selections appear, click on “PostView”.
The PostView screen then appears. Any desired data file saved by WaveView may then be
recalled for analysis.

On Range Label Units
YES ± 5.0V CHAN 2 V
YES 0.0 - 0.20 V CHAN 3 V
YES ± 0.25 V CHAN 4 mV

Chapter 5 Using WaveView

WaveBook User’s Manual 5-5

WaveView Configuration Menu Items & Buttons
Control functions in the configuration window are available through the pull-down menu or the toolbar.
The figure shows the menu, the toolbar, and each tool icon. In the following sections, menu functions
are explained in order of the menu structure (not all menu items have a corresponding tool icon).

File
The file menu provides four basic functions:

New Set all parameters to their default startup setting.
Save Save the existing configuration for later recall.
Load Load a saved configuration.
Exit Leave the WaveView program.

Edit
The Edit menu includes the following functions:

Make All Channels
Inactive

This command places a “No” in the On field of all of the channels. If your channel
scan includes only a few channels, it may be easier to make all of the channels
inactive, then turn on only those few channels that you want.

Make All Channels
Active

This command places a “Yes” in the On field of all of the channels.

Go To Row This command pops up a dialogue box which allows you to enter a channel number
to be modified. For hardware configurations that contain a large number of
channels, this is a faster method of moving around than using the scroll bars.

Fill Down When multiple cells within a column are selected, this command takes the top-most
selected cell and copies its contents to the selected cells below.

Using WaveView Chapter 5

5-6 WaveBook User’s Manual

Window
The Window menu includes the following functions:

Scan/Trigger
Configuration

Opens display window to allow selection of the number/speed of the scan and the triggering method to start the
scan.

Module
Configuration

Opens the display window that shows the current inventory of expansion modules in the system and allows the
configuration of some expansion module parameters.

Scope Opens the display window to allow real-time viewing of the acquired data.
Direct to Disk Opens the display window to allow the writing of acquisition data to disk files.
PostView Starts the PostView application.

System
The System menu includes the following functions:

Select LPT Port
(16-bit version)

Brings up a dialog box prompting you to select the LPT port, interrupt level, and protocol for the WaveBook. After
an LPT port is selected, WaveView opens a new session with the WaveBook hardware and attempts to
communicate with it. If the hardware is found, the application’s main window is opened. If no hardware is found,
you will be alerted and the application will open with the controls disabled. To reconfigure the LPT port setting
and try again, click Select LPT Port under the Select Port menu. If the WaveBook hardware still cannot be
identified by the software, exit WaveView and try the WBKTest utility program.

Select Device
(32-bit version)

Opens the Select Device dialog box that shows you the devices to choose from currently in the system.

Simulated
WaveBook

This command opens a WaveView session but does not attempt to communicate with WaveBook hardware.
Instead, the application simulates the interaction between the software and the hardware. If WaveView is
presently attached to real WaveBook hardware, this command will close that session.

Factory
Calibration
Table

The software uses the factory generated calibration constants of each component in the system to achieve
calibration of the system as a whole. These calibration constants are stored on each device in the system. This
allows for a “plug-and-play” mixing of devices while still allowing the system to remain calibrated. This
calibration method is useful if the system configuration changes often.

User
Calibration
Table

The WaveCal program allows you to perform a calibration of the complete signal path from the input to the A/D
stage. The calibration constants are stored in the Calibration Table on the WaveBook main board.
Recalibration is required whenever any part of the signal path is changed (eg adding an expansion chassis or
WBK11). Slightly better accuracy can be achieved at the price of manually recalibrating the system. This
method is preferred when the configuration remains relatively stable and the user wants improved accuracy.

Acquire Data
Packed

The normal 16-bit size of the data is compressed to 12 bits so that four 12-bit samples can pack into three 16-bit
words. Such packing is useful when extremely fast acquisitions are required; the amount of transfer data is
reduced 25% with a corresponding reduction in transfer time. Other advantages of using packed data include
less data to store in the buffer and less data to archive. Use packed data if buffer overrun errors are generated
during the acquisition. Disadvantages of the packed-data format include extra processing steps for unpacking
the data and some loss in resolution (less than 1/2 LSB). The normal recommendation is to use packed data.

Acquire Data
Unpacked

Data is acquired in standard 16-bit format. Access to unpacked data is faster than packed data since no data
decompression needs to be performed. Normally, unpacked data can be used if no buffer overruns occur during
the acquisition. Disadvantages of unpacked data include slower transfer of data from the WaveBook to the PC,
and the need for more disk space if the data is to be archived.

Set Foreground
Mode

This command forces WaveView to acquire data in foreground mode. Acquiring data in the foreground allows for
a faster acquisition rate using full resources of the computer. The trade-off is that WaveView will hold the
computer locked during such an acquisition till the acquisition is complete or interrupted by an error (e.g., buffer
overrun). Using foreground mode is generally recommended.

Chapter 5 Using WaveView

WaveBook User’s Manual 5-7

WaveView Configuration Screen Components

Input Channel Configuration
The display below shows the layout for the channel configuration spreadsheet.

The spreadsheet allows the analog input channels and/or digital channel to be configured and
displayed. The spreadsheet consists of rows and columns much like an accounting spreadsheet. The
top row is for the high-speed digital input channel. Rows 1 through 72 configure the analog input
channels. The number of rows may vary depending on system configuration. The various columns
contain the configuration information for each channel. Some columns allow blocks of cells to be
altered simultaneously while others only allow one cell to be changed at a time. Some columns may be
static and cannot be altered by you. Clicking a column header will select the entire column if
applicable.

CH
The channel number column labeled CH is static and cannot be altered. This column identifies the
analog (or digital) input channel to be configured in that row. This number includes all channel
numbers from the WaveBook/512 and attached expansion chassis (WBK10, WBK14, and/or WBK15).
The channels are numbered as follows:

CH Description Default Label
Dig WaveBook Digital Channel Dig
0-1 to 0-8 WaveBook Analog Channels CH01 to CH08
1-1 to 1-8 First Expansion WBK10 Channels CH09 to CH16
2-1 to 2-8 Second Expansion WBK10 Channels CH17 to CH24
etc. etc. etc.

On
This column allows you to include or exclude a channel from the scan list. When a cell is selected, the
selection box above the spreadsheet allows “Yes” or “No” to enable or disable the channel. Double
clicking a cell in this column will toggle the channel status. The Make All Channels Active and Make
All Channels Inactive menu items under the Edit menu can be used to globally change all channels to
either “Yes” or “No”.

Using WaveView Chapter 5

5-8 WaveBook User’s Manual

Range
This column allows you to set the gain and polarity for the selected channel(s). Clicking the mouse in
any of the analog channel Range boxes brings up the Select Range selection box. The range of gains
available in the selection box depends on whether or not a WBK11 Simultaneous Sample and Hold
option card is installed in the system. The ranges available without the option card are:

0 - 10.0 V ± 5.0 V
0 - 5.0 V ± 2.5 V
0 - 2.5 V ± 1.0 V
0 - 1.0 V ± 0.5 V

If the WBK11 simultaneous sample and hold card is installed, the following additional gain selections
are available for the channels of the device (WaveBook/512 or WBK10 Expansion Chassis) containing
the option card:

0 - 0.5 V ± 0.25 V
0 - 0.25 V ± 0.10 V
0 - 0.1 V ± 0.05 V

Double clicking on a cell will cycle through the available ranges. The Range selections have no effect
on the Digital Input channel. Note: The WBK11 ranges apply to the WBK12/13; the WBK14 adds the
range ±0.025 V; the WBK15 ranges depend on the particular 5B module used.

Label
This column contains a descriptive name for the input channel. By default, it contains a label which is
similar to its channel number, but this can be changed to any combination of 8 characters. Click on the
desired cell, and type in the desired label name. This column does not have a selection list above the
spreadsheet and does not allow selecting multiple blocks of cells.

Units
This column allows you to change the voltage scale setting of each analog channel displayed when the
Scope option is selected. When a cell is selected, a selection box gives you a choice between V or mV.
You can also enter user units and mx+b scales from this point. Making a selection sets the choice into
the individual cell or block of cells. This option has no effect on the Digital Input channel.

The following options depend on your actual equipment configuration.

LPF On (WBK12/13, WBK14)
This column allows you to include or exclude the low-pass filter from a channel. When selecting a cell,
the selection box above the spreadsheet allows “On” or “Bypass” to enable or disable the filter or block
of filters. Double clicking a cell in this column will toggle the filter status.

LPF Cut-Off (WBK12/13, WBK14)
This column allows you to set the low-pass filter cut-off frequency for the selected channel(s). If you
enter an inappropriate cut-off frequency, the software will round up or down to the next appropriate
frequency for your particular hardware. Since the WBK12/13 filters are assigned to banks, setting the
value in one channel of a bank will update the others.

LPF Type (WBK12/13, WBK14)
This column allows you to configure the low-pass filter for the selected channel(s). When selecting a
cell or block of cells in this column, a selection box above the spreadsheet may or may not appear,
depending upon your particular hardware. If the selection box appears, it will display the appropriate
low-pass filter selections (such as “Elliptic” or “Linear” for the WBK12/13) allowed by your hardware
to configure a filter or block of filters. Double clicking a cell in this column will toggle the filter type
status. A change in the low-pass filter type for one channel will appropriately update any other
channels that are affected.

HPF Cut-Off (WBK14 only)
This column allows you to set the high-pass filter cut-off frequency for the selected channel(s). When a
cell is selected, a selection box above the spreadsheet will display the appropriate cut-off frequency
selections (such as “0.1 Hz” or “10 Hz”) to configure the filter(s). Double clicking a cell in this
column will toggle the cut-off frequency status. A change in the high-pass filter cut-off frequency for
one channel will appropriately update any other channels that are affected.

Chapter 5 Using WaveView

WaveBook User’s Manual 5-9

Current Source Level (WBK14 only)
This column allows you to apply or remove the current source level for the selected channel(s). When
selecting a cell or block of cells in this column, a selection box above the spreadsheet may or may not
appear, depending upon your particular hardware. If the selection box appears, it will display the
appropriate current level selections (such as “Off”, “2 mA”, or “4 mA”) allowed by your hardware to
configure a source or block of sources. Double clicking a cell in this column will toggle the current
level status. A change in the current source level for one channel will appropriately update any other
channels that are affected. Note: When using an ICP transducer, either 2 mA or 4 mA must be
selected. When measuring voltage, set the current-source level to “Off”.

Scan and Trigger Configuration
The display below shows the layout for the Scan and
Trigger Configuration window. This window is
displayed by making the Window menu selection or
clicking on the button bar icon.

Scan Count
The Scan Count entry box is within the Scan and Trigger
Configuration window. This selection box allows you
to set the number of scans to take prior to the trigger
and following the trigger. These settings will be used
when an acquisition is started.

The following formula determines the maximum number of scans that can be stored for use in the
Scope mode (does not apply to storage to disk):

(Scan Count) * (# of Channels) * 4 < Available PC Memory

A scan includes all of the channels that are marked as “On” in the analog input configuration
spreadsheet.

Scan Rate
Just below the Scan Count box is the Scan Rate
selection box. The Scan Rate box allows you to select
how fast to scan both pre-trigger and post-trigger. It
can be set to either Frequency or Period. If Frequency
is selected for the timebase, the units can be set to Hz,
kHz, or MHz. For Period, the units can be set to
seconds, milliseconds, or microseconds.

Using WaveView Chapter 5

5-10 WaveBook User’s Manual

Trigger
The Trigger selection box allows you to select the
triggering method to start the scan. The screen shows
the various triggering options available.

Immediate

Triggering starts when the One-Shot or Continuous
button is clicked.

Manual

Prior to acquiring data, the system must first be armed
by clicking on the One-Shot or Continuous button.
The Manual button is then clicked to start the
acquisition.

Digital

Selecting Digital brings 2 triggering options to the
Trigger selection box, allowing you to select either a
rising or falling-edge trigger. The TTL trigger signal
connects to pin (TTLTRG) of the Digital I/O &
Trigger port on the WaveBook front panel.

Channel 1 Analog

This option allows you to set up
additional parameters for the
acquisition of analog data. Several
new items are added to the Trigger
selection box, including options for
the Trigger Condition.

Note that Channel 1 Analog
triggering is valid for Channel 1
only.

The selections for trigger correspond to the following trigger conditions:

Channel 1 Analog Triggering Selections and Conditions
Rising Edge The signal level must have a positive slope as it crosses the trigger level.
Falling Edge The signal level must have a negative slope as it crosses the trigger level.

Chapter 5 Using WaveView

WaveBook User’s Manual 5-11

Multiple Ch Analog

Triggering can be further customized by
selecting Multiple Ch Analog triggering.
This option displays the following selection
parameters.

• Selecting OR causes the acquisition to
trigger when any of the selected channel conditions become true.

• Selecting AND issues a trigger when all the selected channel conditions become true.

The Trigger Condition option has the
following choices:

The triggering selections correspond to the following trigger conditions:

Multiple Ch Analog Triggering Selections and Conditions
No Trigger The channel will not be included in the list of channels to examine for trigger conditions.
Rising Edge The signal level must first go below the trigger level by the user-set hysteresis amount.

Then, the trigger channel is valid whenever the signal level is above the trigger level
and stays valid until the signal level goes below the trigger level by at least the
hysteresis amount.

Falling Edge The signal level must first go below the trigger level by the user-set hysteresis amount.
Then, the trigger channel is valid whenever the signal level is below the trigger level
and stays valid until the signal level goes above the trigger level by at least the
hysteresis amount.

Above Thresh A trigger channel is valid whenever the signal level is above the trigger level and stays
valid until the signal level goes below the trigger level by at least the user-set
hysteresis amount.

Below Thresh A trigger channel is valid whenever the signal level is below the trigger level and stays
valid until the signal level goes above the trigger level by at least the user-set
hysteresis amount.

Latch Rising Edge The signal level must first go below the trigger level by the user-set hysteresis amount.
Then, the trigger channel is valid whenever the signal level is above the trigger level
and stays valid until the acquisition is complete.

Latch Falling Edge The signal level must first go below the trigger level by the user-set hysteresis amount.
Then, the trigger channel is valid whenever the signal level is below the trigger level
and stays valid until the acquisition is complete.

Latch Above Thresh A trigger channel is valid whenever the signal level is above the trigger level and stays
valid until the acquisition is complete.

Latch Below Thresh A trigger channel is valid whenever the signal level is below the trigger level and stays
valid until the acquisition is complete.

The threshold voltage and hysteresis level may be set for each channel as required—position cursor
per channel and type in the desired value(s).

Using WaveView Chapter 5

5-12 WaveBook User’s Manual

WaveView Scope Menu Items & Buttons
The Scope mode of the WaveView program allows you to obtain a visual representation of the acquired
waveforms. An acquisition may consist of all channels physically part of the WaveBook system. A
fully-configured system (a WaveBook/512 and 8 WBK10, WBK14, and/or WBK15 expansion chassis)
has a total of 72 analog channels. All 72 channels may be viewed in WaveView, although not
simultaneously. The maximum number of channels that can be displayed at one time is 8; however,
each of the 8 displayed channels can be set to any channel in the system. A “Channel” box is located at
the right end of each chart and is used to select the desired channel. Click on the box to display the
channel list; then click on the desired channel. The waveform display is actually a window looking at a
section of the acquisition. The window size may be increased or decreased and moved to any location
on the timeline. The waveforms may be examined at any time, even during the acquisition.

Two selection methods are available for controlling the acquisition process and the Scope display: the
menu bar or the tool bar. The next figure shows the menu bar, the tool bar, and the tool icons. The
functions of the menu items and tool buttons are explained next.

File
The File menu under Scope Mode provides the following functions.

Save PostView File Saves data in a PostView format. Same as the Save Data File button (icon # 1).
Save PostView File As Saves a previously saved PostView file with a new name.
Save Asc File Saves data in ASCII format.
Save Asc File As Saves a previously saved ASCII file with a new name
Print Window Prints the contents of the display screen.
Close Scope Closes the Scope display and returns to the configuration menu.

Chapter 5 Using WaveView

WaveBook User’s Manual 5-13

Acquire
The menu under Acquire provides the following functions:

Acquire Continuously Sets WaveView to a looping mode. As soon as an acquisition has completed, it is re-
armed and the acquisition repeats. Requires the Stop or Abort button to stop.
Same function as the Continuous Acquisition button (icon # 2).

Acquire One Shot The acquisition starts as soon as the trigger event is satisfied. Same as the Acquire
One-Shot button (icon # 3).

Stop After Acquisition
Complete

Stops the data acquisition when continuous mode has been selected. The scan will
finish taking the last set of samples before stopping. Same as the Stop After
Acquisition Complete button (icon # 4).

Stop Immediately Stops the data acquisition immediately without waiting for the last acquisition to finish.
Same function as the Stop Immediately button (icon # 5).

Manual Trigger Acquisition starts when the manual trigger is selected if in Continuous or One-Shot
Mode. Same as Manual Trigger button (icon # 6).

Charts
This menu item allows you to select the number of channels to display. Up to 8 channels can be
displayed at one time.

Number of Charts Sets the number of charts to be displayed simultaneously. A maximum of 8 charts
may be displayed.

Zoom In Halves the visible timebase. Example: if 10 ms of information is visible, clicking Zoom
In will show 5 ms. Same as the Zoom In button (icon # 8). Maximum Zoom In is 2
samples.

Zoom Out Doubles the visible timebase. Example: if 10 seconds of information is visible, clicking
Zoom Out will show 20 seconds. Same as the Zoom Out button (icon # 7).
Maximum Zoom Out is 2000 samples.

Enable AutoScaling Continuously adjusts the Y-axis for all channels so that the visible waveform fills 90%
of the graph’s range.

Scale All Charts Adjusts the Y axis for all channels so that the visible waveform fills 90% of the graph’s
range. Same as the Scale All Charts button (icon # 9).

Using WaveView Chapter 5

5-14 WaveBook User’s Manual

Options
The Options menu provides you with chart display options.

Display Cross Hairs A cross hair is a marker that shows the numerical values of time and magnitude at its
present location in the waveform. Same as Display Cross Hairs button (icon # 10).
Toggle button to turn cross hairs on or off.

Display Grids Displays a grid for each chart. Same as Display Grids button (icon # 11). Toggle button
to turn grids on or off.

Individual Cross-Hairs can be moved by holding down the left mouse button and dragging the selected
Cross-Hair to the new location on the chart. Holding the right mouse button and dragging moves all
the cross-hairs simultaneously to a new location. The voltage and time display at the side changes as
you do this. Cross-hairs are disabled during an acquisition.

The next figure shows the display with both the CROSS HAIRS and GRIDS turned ON.

Window
The Window menu provides the following operation.

Go To Configuration Window Leaves the Scope Mode display and goes back to the configuration menu.
Unlike the Close Scope function from the File menu, this option does not
close the Scope display. You can toggle back and forth between screens by
clicking the mouse on the desired display screen.

Chapter 5 Using WaveView

WaveBook User’s Manual 5-15

WaveView Scope Display
The Scope mode is WaveView’s display utility. It allows you to see the data acquisition waveforms in
real-time. Before Scope mode can be enabled, at least one channel must have been set to ON in the
configuration spreadsheet. The Scope mode display has several indicators as shown in the next figure.

Scope Mode Indicators and Descriptions
Y-Axis Adjust Allows adjustment of the displayed range. Clicking on the value highlights the

number. Enter desired new value and press Enter.
Individual Channel

Scaling
Adjusts the scaling of the individual channels so that the visible waveform fills

90% of the graphs range.
Time of First Scan in

View
Displays the starting time of the acquisition prior to the trigger event.

Trigger Displays the trigger event.
Time of Last Scan in

View
Displays the stopping time of the acquisition following the trigger event.

Channel Select List
Box

Clicking on this cell displays the list of all channels selected in the WaveView
configuration menu. A maximum of 8 channels may be displayed at one time
with the remaining channels available through the scroll bar.

Magnitude Indicator Displays the magnitude of the voltage at the point where the marker cross-hair
intersects the waveform. Moving the marker to different locations on the
waveform changes the value of the displayed voltage.

Time Indicator Displays the point on the acquisition time-line where the marker cross-hair
intersects the waveform. This value changes as the marker is moved along
the X-axis (time scale).

Scroll Bar Allows the waveform to be scrolled right or left. Click and hold on the arrows on
either end of the scroll bar to move the waveform up or down the length of the
acquisition.

Scroll Button Shows the location of the displayed portion of the waveform relative to the entire
acquisition. Click and hold on the scroll button, then drag to any location on
the scroll bar to quickly move to a new location on the time-line of the
acquisition.

 Y-Axis Adjust

Individual Channel
Scaling

Time of First Scan
in View

Channel Select List
Box

 Magnitude
 Indicator

 Time Indicator

Time of Last Scan
in View

Scroll Bar

 Trigger Scroll Button

Using WaveView Chapter 5

5-16 WaveBook User’s Manual

WaveView Direct-To-Disk Menu Items & Buttons
Control functions in the Direct-To-Disk window are available through the pull-down menu or the
toolbar. The figure shows the menu, the toolbar, and each tool icon. In the following sections, menu
functions are explained in order of the menu structure (not all menu items have a corresponding tool
icon).

File
The File menu under Direct-To-Disk Mode provides the following functions.

Convert Data Files Opens a dialog window to allow the selection of data file converters.
Close Direct to Disk Closes the Direct-To-Disk display and returns to the Configuration menu.

Acquire
The menu under Acquire provides the following functions.

Acquire Continuously Sets WaveView to a looping mode. As soon as an acquisition has completed,
it is re-armed and the acquisition repeats. Requires the Stop or Abort button
to stop. Same function as the Continuous Acquisition button (icon # 1)

Acquire One-Shot The acquisition starts as soon as the trigger event is satisfied. Same as the
Acquire One-Shot button (icon # 2)

Stop After Acquisition
Complete

Stops the data acquisition when continuous mode has been selected. The
scan will finish taking the last set of samples before stopping. Same as the
Stop After Acquisition Complete button (icon # 3)

Stop Immediately Stops the data acquisition immediately without waiting for the last acquisition to
finish. Same function as the Stop Immediately button (icon # 4)

Manual Trigger Acquisition starts when the manual trigger is selected if in Continuous or One-
Shot Mode. Same as Manual Trigger button (icon # 5)

Chapter 5 Using WaveView

WaveBook User’s Manual 5-17

Window
The Window menu provides the following operation.

Go To Configuration
Window

Leaves the Scope Mode display and goes back to the configuration menu. Unlike the
Close Scope function from the File menu, this option does not close the Scope
display. You can toggle back and forth between screens by clicking the mouse on
the desired display screen.

WaveView Direct-to-Disk Data Destination Box
Several file-handling options are available in the Data Destination box within the WaveView Direct-to-
Disk screen (see next figure and table).

 Menu Bar

 Tool Bar

Data Destination Box

Data Destination Options on Direct-to-Disk Screen
Auto Increment Filename

checkbox
If checked - allows automatic change to the suffix of the Current Filename using

the base Filename and the numbers in the “Start Index - Stop Index” range.
If not checked - Current Filename will be equal to base Filename.
Current Filename is shown at the bottom of the dialog box.

Filename text box Displays base filename; allows user to input filename using keyboard or Browse
button.

Path text box Displays root path to the directory which contains several subdirectories like \bin
,\PostView, \ASCII, \sm … . Any such subdirectory contains the data files of the
appropriate type.

Browse buttons Allows user to browse and set base filename or root directory.
Reset Current Index button Resets current index and Current Filename to the “Start Index”
Validate File Overwrite

checkbox
If checked - will require confirmation for overwriting any already existing files

(binary, ASCII, PostView, SnapMaster …)
Setup Filename button Opens a dialog window to allow user to select appropriate data formats to which

binary data will be converted after the acquisition.

Using WaveView Chapter 5

5-18 WaveBook User’s Manual

Using PostView
PostView is an application that allows you to graphically view the waveforms recorded by WaveView.
As the data file is being created by the acquisition application, a descriptor file used by PostView is
also created. PostView can be launched independently or launched from WaveView’s Window menu.
Multiple sessions of PostView can be invoked concurrently to view multiple data files.

To view a data file from within PostView, select Open under the File menu. A File Open dialog box
provides a means of selecting a WaveView data file. To place channel waveforms into the window,
select the number of charts from 1 to 16 under the Number of Charts menu item. Selecting N number
of charts will automatically place the first N channels in the charts. Use the Channel Select List Box
next to the chart to associate a different channel with the chart.

When PostView is launched from WaveView, it automatically opens the file selected as the destination
file in those applications. To view other files, use Open under the File menu.

PostView Timebase
PostView automatically detects the timebase of the data file and shows the time in the X-Axis labels in
seconds.

Timebase for WaveView

All WaveView files begin at the trigger point (t = 0), and the time between each scan is constant.

PostView Menu Items

File
The File menu provides the following basic functions.

File Menu Items and Descriptions
Open Data File Open a data file created by WaveView. PostView automatically detects whether the file

contains ASCII or binary data.
Print Window Print the present PostView window.
Exit Leave the PostView program.

Number of Charts
The Number of Charts menu provides one basic function.

Number of Charts Menu Items and Descriptions
1-16 After a data file has been opened, the number of desired charts can be selected. You can also

use this menu selection to change the number of charts displayed.

Go To
The Go To menu provides 4 basic functions.

Go To Menu Items and Descriptions
Percentage Automatically scrolls to the desired percent of the data file. For example, selecting 50% would

display a waveform segment from the middle of the data file.
Scan Number Automatically scrolls the waveforms so that the desired scan number is in view. This menu

selection invokes a dialogue box which displays the number of scans in the file.
Time Automatically scrolls the waveforms so that the desired time is in view.
Trigger point Automatically scrolls the waveforms so that the trigger point (t = 0) is in view.

Options
The Options menu provides 2 basic functions.

Options Menu Items and Descriptions
Grids (Ctrl-G) Allows grids to be turned off and on for all visible graphs. When a check appears in front of

an item, its associated indicator is on or visible.
Markers (Ctrl-K) Allows markers to be turned off and on for all visible graphs. When a check appears in

front of an item, its associated indicator is on or visible.

Chapter 5 Using WaveView

WaveBook User’s Manual 5-19

Help
The Help menu provides 3 basic functions.

Help Menu Items and Descriptions
Contents The initial PostView help screen provides an overview and listing of the help file contents.

A single topic can be selected for quick access to help information.
Search Type a word or select one from the Show Topics list for quick access to help information.
How to Use Help Provides instructions on how to use a Windows Help system.

PostView Display
The PostView display has several indicators as shown in the next figure.

 Chart Markers

Y-Axis Adjust

Auto Scale

Channel Select
List Box

 Magnitude
 Indicator

 Time Indicator

 Scroll Bar

Zoom In Large Left Stop Event Marker Small Right
Zoom Out Small Left Scroll Button Large Right

PostView Indicators and Descriptions
Zoom In The Zoom In button halves the visible timebase, showing less of the waveform. For example, if 10 seconds

of information is visible, clicking the Zoom In button will show 5 seconds.
Zoom Out The Zoom Out button doubles the visible timebase, showing more of the waveform. For example, if 10

seconds of information is visible, clicking the Zoom Out button will show 20 seconds.
Scroll Bar The Scroll Bar allows the waveforms to be scrolled right or left. The Scroll Bar has 5 active areas for

scrolling the waveforms.
• The Small Left and Small Right scroll the waveforms left and right approximately 20%.
• The Large Left and Large Right scroll the waveforms left and right approximately 80%.
• The Scroll button shows the relative location of the visible region of the waveforms and can be dragged

along the scroll bar to any location desired.
Y-Axis Adjust The Y-Axis Adjust fields show the chart’s minimum and maximum for every visible chart in the engineering

units shown. Clicking the Auto Scale button automatically adjusts the Y-Axis Adjust fields. To adjust any
chart’s minimum or maximum, place the cursor in the desired Y-Axis Adjust field and type in a new value.

Channel Select
List Box

Each chart has a Channel Select List Box to allow you to assign any of the available channels to that chart.
The Channel Select List Boxes contain labels that were assigned to the recorded channels by WaveView.

Auto Scale Clicking the Auto Scale button adjust the Y-Axis labels so that the visible waveform fills 90% of the chart’s
range.

Markers Each chart contains a marker that shows the numerical values of time and magnitude at its present location
in the waveform. The Markers start out at the far left of every chart, showing the time and magnitude of
the first visible point. The left mouse button allows you to drag the marker of each chart independently.
The right mouse button moves the markers from all of the charts synchronously. The Options menu
contains a function which allows you to turn markers on and off. When a check appears in front of this
item, its associated indicator is on or visible. Selecting the menu item toggles the indicator (and the
check mark) on and off.

Stop Event
Marker

The Stop Event Marker on the time axis shows the location of the stop point.

Using WaveView Chapter 5

5-20 WaveBook User’s Manual

- Notes

Using WaveBook/512 with C 6

WaveBook User’ Manual 6-1

This chapter describes the use of the C language with the standard API to develop a basic data
acquisition program. For additional functions of the standard API, refer to chapter 10. Note: The
WaveBook system includes full-featured DOS and Windows software drivers for C, QuickBASIC
(chapter 7), Turbo Pascal (chapter 8), and Visual Basic (chapter 9). The enhanced API (for C, Visual
Basic and Delphi) is described in chapters 11 and 12.

The same program examples are used for all versions of C, both DOS/Windows and Borland/Microsoft
C. The only differences are the files used to create an executable version of the example and the
command used to create this executable. The following sections describe different types of C support.

Borland C for DOS
The Borland C for DOS support files are located in the WAVEBOOK\DOS\BC directory. These files
include the WBK.H header file, WBKL.LIB large model library, MAKEBC.BAT example batch file
and ADCEX*.C example source files. WBK.H, which contains WaveBook function prototypes and
definitions, should be referenced at the top of each file that makes calls to the WaveBook driver using
the #include C pre-processor command. Each of the ADCEX*.C examples references WBK.H. The
WBKL.LIB library should be included as part of the program’s project or included explicitly by the
linker. This library is a large model library, so all source files should be compiled using the large
model flag (-ml) as demonstrated in the MAKEBC.BAT batch file.

Assuming Borland C 3.x or greater has been installed properly, ADCEX1.C can be compiled and
linked using the following command line: bcc -ml adcex1.c wbkl.lib. Type MAKEBC at the
DOS prompt from the WAVEBOOK\DOS\BC directory to use the MAKEBC.BAT batch file to
compile and link all the example programs.

Microsoft C for DOS
The Microsoft C for DOS support files are located in the WAVEBOOK\DOS\MSC directory. These
files include the WBK.H header file, WBKL.LIB large model library, MAKEMSC.BAT example batch
file and ADCEX*.C example source files. WBK.H, which contains WaveBook function prototypes
and definitions, should be referenced at the top of each file that makes calls to the WaveBook driver
using the #include C pre-processor command. Each of the ADCEX*.C examples references WBK.H.
The WBKL.LIB library should be included as part of the programs project or included explicitly by the
linker. This library is a large model library, so all source files should be compiled using the large
model flag (/AL) as demonstrated in the MAKEMSC.BAT batch file.

Assuming Microsoft C 6.x or greater has been installed properly, ADCEX1.C can be compiled and
linked using the following command line: cl /AL adcex1.c wbkl.lib. Type MAKEMSC at the
DOS prompt from the WAVEBOOK\DOS\MSC directory to use the MAKEMSC.BAT batch file to
compile and link all the example programs.

Borland C for Windows
The Borland C for WIN support files are located in the WAVEBOOK\WIN\C directory. These files
include the WBK.H header file, WBK.LIB large model library, MAKEBCW.BAT example batch file
and ADCEX*.C example source files. In addition to these files, the WBK.DLL dynamic link library,
which should be in the Windows SYSTEM directory, will be used when a program is executed.
WBK.H, which contains WaveBook function prototypes and definitions, should be referenced at the
top of each file that makes calls to the WaveBook driver using the #include C pre-processor command.
Each of the ADCEX*.C examples references WBK.H. The WBK.LIB library should be included as
part of the programs project or included explicitly by the linker. This library is a large model library,
so all source files should be compiled using the large model flag (-ml) as demonstrated in the
MAKEBCW.BAT batch file.

Using WaveBook/512 with C Chapter 6

6-2 WaveBook User’s Manual

Assuming Borland C 3.x or greater has been installed properly, ADCEX1.C can be compiled and
linked using the following command line: bcc -ml -W adcex1.c wbk.lib. Note: this
command line uses the -W option to create a Windows application which uses the Borland EasyWin
libraries. Type MAKEBCW at the DOS prompt from the WAVEBOOK\WIN\C directory to use the
MAKEBCW.BAT batch file to compile and link all the example programs.

Microsoft C for Windows
The Microsoft C for WIN support files are located in the WAVEBOOK\WIN\C directory. These files
include the WBK.H header file, WBK.LIB large model library, MAKEMSCW.BAT example batch file
and ADCEX*.C example source files. In addition to these files, the WBK.DLL dynamic link library,
which should be in the Windows SYSTEM directory, will be used when a program is executed.
WBK.H, which contains WaveBook function prototypes and definitions, should be referenced at the
top of each file that makes calls to the WaveBook driver using the #include C pre-processor command.
Each of the ADCEX*.C examples references WBK.H. The WBK.LIB library should be included as
part of the programs project or included explicitly by the linker. This library is a large model library,
so all source files should be compiled using the large model flag (-ml) as demonstrated in the
MAKEMSC.BAT batch file.

Assuming Microsoft C 3.x or greater has been installed properly, ADCEX1.C can be compiled and
linked using the following command line: cl /AL /Mq adcex1.c wbk.lib. Note that this
command line uses the /Mq option to create a Windows application which uses the Microsoft
QuickWin libraries. Type MAKEMSCW at the DOS prompt from the WAVEBOOK\WIN\C directory
to use the MAKEMSCW.BAT batch file to compile and link all the example programs.

Initializing WaveBook Communications
To communicate with the WaveBook hardware, the driver must initialize the hardware and itself
through the function call wbkInit. Most WaveBook commands cannot be accepted until the
WaveBook is initialized using wbkInit. The wbkSetDefaultProtocol is one of the functions
that can be called before wbkInit can be used to set the most efficient printer port protocol to use.
The examples use the slowest 4-bit protocol, but this can be changed to another protocol if the
wbktest program determines that your system supports one. To close a WaveBook session, use the
function wbkClose. The following program skeleton shows the usage of the wbkInit and
wbkClose commands. Each of the example programs described later in this chapter initialize and
close the WaveBook in this fashion, so this code has been removed from those descriptions.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include "wbk.h"

void
main(void)
{

clrscr();
printf("\nThis is the beginning of my program.\n");

// Perform non-WaveBook tasks here.

// Start a WaveBook session.
wbkSetDefaultProtocol(wbkProtocol4);
wbkInit(LPT1, 7);

// Perform WaveBook and non-WaveBook tasks here.

//Close the WaveBook
wbkClose();

}

Error Handling
The WaveBook driver has a built-in facility for handling run-time errors. When an error is detected in
the driver, control is automatically vectored to a default error handler which prints an error message

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-3

and halts operation. Optionally, the user can provide an error handling routine that will be executed
instead of the default handler whenever an error is detected by the driver. When the driver calls the
error handler, the error code is passed as a parameter. This error code can be used to decide upon the
action to take or it can be ignored. The following program fragment shows an example of a user error
handler:

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include "wbk.h"

void _far _pascal myhandler(int error_code);

void
main(void)
{

// Perform non-WaveBook tasks here.

// Set error handler and initialize WaveBook
wbkSetErrHandler(myhandler);
wbkSetDefaultProtocol(wbkProtocol4);
wbkInit(LPT1, 7);

// Perform WaveBook and non-WaveBook tasks here.

//Close and exit
wbkClose();

}

// This is the user error handler routine.
void _far _pascal
myhandler(int error_code)
{

// Put your error handler code here.

printf("\nError! Program aborted\nWaveBook Error: 0x%x\n",error_code);
exit(1);

}

One-Step Analog Input
The following excerpts are from the example program ADCEX1.C. This program demonstrates the use
of the one-step WaveBook driver functions. These functions are the easiest to use but lack some
flexibility. For additional flexibility, the custom analog input functions, discussed later, should be
used.

Define constants and a data buffer for the collected data.

#define CHANS 8
#define SCANS 9
#define FREQ 1000.0
#define GAIN WgcX1
#define BIPOLAR 1
int _huge buf[CHANS * SCANS]

wbkRd in this example will get 1 sample from channel 1 at a gain of ×1 (GAIN) in bipolar mode. The
value will be returned in the variable sample.

wbkRd(1, &sample, GAIN, BIPOLAR);

wbkRdN is used to get 9 (SCANS) samples from channel 1 at a gain of ×1 in bipolar mode. This
command requires a trigger to be satisfied before the data is collected. A trigger source of Software will
start the acquisition immediately. The frequency of data collection is set to 1KHz (FREQ). The data
will be returned in the integer array buf.

 wbkRdN(1, buf, SCANS, WtsSoftware, 0.0f, FREQ, GAIN, BIPOLAR);

wbkRdScan collects an entire scan of data comprised of multiple channels starting with channel 1 and
ending with channel 8 (CHANS). With all the channels to a gain of X! (GAIN) and bipolar mode.

 wbkRdScan(1, CHANS, buf, GAIN, BIPOLAR);

Using WaveBook/512 with C Chapter 6

6-4 WaveBook User’s Manual

wbkRdScanN collects 9 (SCANS) scans consisting of multiple channels. Like wbkRdScan, this
command reads from channels 1 to 8 at the same gain and unipolar/bipolar setting. Since multiple scans
are being collected, a trigger source and timebase are required. The arguments shown set the trigger
source to software causing an immediate trigger and a sample frequency of 1KHz (FREQ). And like
wbkRdN, a trigger source and timebase are required and set to WtsSoftware and 1KHz (FREQ)
respectively.

 wbkRdScanN(1, CHANS, buf, SCANS, WtsSoftware, 0.0f, FREQ, GAIN, BIPOLAR);

The results are then printed.

 printf("\nResults of RdScanN:");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", i + 1);
 for(j = 0; j < SCANS; j++) printf(" %6d",buf[(j * CHANS) + i]);
 }

Low-Level Analog Input
The following excerpts are from the example program ADCEX2.C. This program shows several
examples of the lowest level WaveBook driver functions. These functions are more complex than the
high level functions but allow the greatest flexibility.

Define constants and a data buffer for the collected data.

#define CHANS 8
#define SCANS 10
#define BLOCK 6
#define FREQ 5.0
int _huge buf[CHANS * SCANS];

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

wbkSetAcq(WamNShot, 0, SCANS);

The wbkSetMux command defines the channels in a scan. The 1st and 2nd arguments define the start
and end channels of the scan. Unlike the command wbkSetScan, this command does not allow a
separate gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the
scan in a random order.

wbkSetMux(1, CHANS, WgcX1, 1);

The pre- and post-trigger sample frequencies are then set. Since this application does not collect pre-
trigger scans, the 1st argument is ignored.

wbkSetFreq(1.0, FREQ);

wbkGetFreq returns the present settings for the pre- and post-trigger frequencies.

 wbkGetFreq(&preTrigFreq, &postTrigFreq);
 printf("Result wbkGetFreq: pre-trigger=%.2fHz, post-trigger=%.2fHz\n",<R>
preTrigFreq, postTrigFreq);

Set the trigger source to Software. This trigger is satisfied by the execution of the command
wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog channel.
In this case, the voltage level argument is ignored.

 wbkSetTrigHardware(WtsSoftware, 0.0f);

The system is armed to acquire data. For the present configuration, the data will not be collected until
the software trigger has been satisfied by the execution of the wbkSoftTrig command.

wbkArm();

The system is then triggered for data collection. When the trigger is satisfied, data immediately starts
flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the internal
buffer overflows. If a background acquisition is configured, the data will automatically be transferred
into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC memory must
keep up with the acquisition rate to avoid a WaveBook buffer overrun.

wbkSoftTrig();

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-5

Finally, perform a foreground transfer from the WaveBook of size BLOCK. The data is then printed on
the screen. The transfers will continue until the acquisition is no longer active.

 do {
 // Read BLOCK scans from the hardware with cycle mode off,
 // updateSingle on and foreground enabled
 wbkBufferTransfer(buf, BLOCK, 0, 1, 1, &active, &retCount);

 // Print results
 printf("\nResult wbkBufferTransfer: retCount=%lu, active=%d", retCount,
 (int)active);
 for(i = 0; i < retCount; i++) {
 printf("\nScan %5d:", i + 1);
 for(j = 0; j < CHANS; j++) {
 printf(" %6d", buf[i * CHANS + j]);
 }
 }
 } while (active != 0);

Accessing the High-Speed Digital Input Port
The following excerpts are from the example program ADCEX3.C. This program shows how to collect
analog and high speed digital signals concurrently, in the same scan.

Define constants and a data buffer for the collected data.
#define FREQ 5
#define SCANS 10
#define CHANS 3
int _huge buf[CHANS * SCANS];

To create a channel scan of non-sequential channels with independent gain and unipolar/bipolar
settings, the arrays of channel parameters must be created and passed to wbkSetScan. Channel 0 is the
high speed digital port. When added to the channel scan, the high speed digital port is scanned
synchronously with the analog signals.

chans[0]=0; // high speed digital channel
chans[1]=5; // analog channel 5
chans[2]=8; // analog channel 8

The following lines set all of the gains and unipolar/bipolar settings to the same setting. Your program
can assign each channel to a different value.

for(i=0; i < CHANS; i++) {
gains[i]=WgcX1; // unity gain
polarities[i]=1; // bipolar

}

The following line gets the driver version and prints the information.
 wbkGetDriverVersion(&version);
 printf("Using driver version %f\n\n", 0.01 * version);

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

wbkSetAcq(WamNShot, 0, SCANS);

Setup the scan by passing the channel configuration arrays to the wbkSetScan command.
wbkSetScan(chans, gains, polarities, CHANS);

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

wbkSetFreq(1.0, FREQ);

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

wbkSetHardwareTrig(WtsSoftware, 0.0f);

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

wbkArm();

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the

Using WaveBook/512 with C Chapter 6

6-6 WaveBook User’s Manual

internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

wbkSoftTrig();

The next line performs a foreground data transfer from the WaveBook's internal buffer to the PC's
memory. The foreground transfer will continue until its buffer is full or the acquisition is complete.

wbkBufferTransfer(buf, SCANS, 0, 1, 1, &active, &retCount);

The following lines print the transferred data.

 printf("Results of BufferTransfer:\n");
 printf("Scan Digital_ch_0 Analog_ch_5 Analog_ch_8");
 for(i = 0; i < retCount; i++) {
 // get the upper (valid) 8 bits of the digital input
 buf[CHANS * i] = (unsigned int)buf[CHANS * i] >> 8;
 printf("\n %2d ", i + 1);
 for(j = 0; j < CHANS; j++) printf(" %6d ", buf[CHANS * i + j]);
 }

Background Processing of Analog Input
The following excerpts are from the example program ADCEX4.C. This program shows how to collect
analog samples and transfer them into the PC's memory in the background. Once the background
acquisition is configured and armed, your program can perform other operations concurrently with the
background data collection. The foreground program can use the wbkGetBackStat command to
periodically check on the status of the acquisition.

For performing acquisition that are greater in size than the allocated buffer, the background operation
can be set to Cycle mode which will wrap around in the allocated buffer as it becomes full. In this
mode, your program must monitor the background and transfer the data out of the allocated buffer
before the background operation overwrites it.

Define constants and a data buffer for the collected data.

#define CHANS 8
#define SCANS 9
#define FREQ 2.0
int _huge buf[CHANS * SCANS];

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

wbkSetAcq(WamNShot, 0, SCANS);

Set the scan configuration.

wbkSetMux(1, CHANS, WgcX1, 1);

This command sets the post-trigger scan rates. Since this application does not collect pre-trigger scans,
the 1st argument is ignored.

wbkSetFreq(1.0, FREQ);

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

wbkSetHardwareTrig(WtsSoftware, 0.0f);

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

wbkArm();

The following line sets up a background transfer. Regardless of the state of the acquisition, the program
will immediately return from this function call and proceed to the next line. As the data is collected by
the WaveBook, it is automatically transferred to the buffer buf.

wbkBufferTransfer(buf, SCANS, 0, 1, 0, &active, &retCount);

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-7

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

wbkSoftTrig();

Although your program can begin processing other tasks at this point, our example program simply
monitors the background until the user hits a key or the acquisition is complete.

 while (active) {
 wbkGetBackStat(&active, &retCount);
 printf("Transfer in progress: %2ld scans acquired.\r", retCount);
 }

The following lines print the collected data.

 printf("Data acquired:\n");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", i + 1);
 for (j = 0; j < retCount; j++) printf(" %6d", buf[i + j * CHANS]);
 }

Complex Triggering
The following excerpts are from the example program ADCEX5.C. This program shows how to setup a
complex trigger where more than one channel can be combined in a logical trigger equation. The
acquisition will start on a rising-edge of channel 1 at 2 volts OR a falling edge on channel 2 at 3 volts.

Define constants and a data buffer for the collected data.

#define FREQ 1000
#define SCANS 9
#define CHANS 3
#define NUM_TRIG 2
int _huge buf[CHANS * SCANS];

The following lines are definitions and initialization for the variables used for setting up the trigger
equation. The variable chans_tr is an array of channels used in the trigger equation. Channels 1 and 2
are specified. The variable gain_tr is an array that holds the gains for channels 1 and 2. In this case
they are both set to X1. Channels 1 and 2 can also be a part of the scan group with the same or
different gain assignments. The variable polarity_tr is an array that holds the unipolar/bipolar settings
for channels 1 and 2. The variable rising is an array that holds the edge settings for channels 1 and 2.
In this case, channel 1 triggers on the rising edge, while channel 2 triggers on the falling edge. The
variables levels and hysteresis are arrays that hold the voltage thresholds and hysteresis settings for
channels 1 and 2, respectively. The variable opstr holds the Boolean operator for the trigger equation.
The + sign indicates an OR operator between channels 1 and 2.

 unsigned int chans_tr[NUM_TRIG] = { 1, 2 };
 unsigned char gains_tr[NUM_TRIG] = { WgcX1, WgcX1 },

polarity_tr[NUM_TRIG] ={ 1, 1 },
rising[NUM_TRIG] = { WctRisingEdge,WctFallingEdge };

 float levels[NUM_TRIG] = { 2.0f, 3.0f },
hysteresis[NUM_TRIG] = { 0.1f, 0.1f };

 char *opstr = "+";

The previous definitions create the following trigger setup:

System Trigger = (CH1 @ ×1, bipolar, rising edge through 2.0V with 0.1V hyst) OR (CH2 @ ×1,
bipolar, falling edge through 3.0 V with 0.1 V hyst)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

wbkSetAcq(WamNShot, 0, SCANS);

Set the scan configuration.

Using WaveBook/512 with C Chapter 6

6-8 WaveBook User’s Manual

 wbkSetMux(1, CHANS, WgcX1, 1);

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

wbkSetFreq(1.0, FREQ);

The following lines notify the user of the system's status then setup the complex trigger.

<M>printf<D>("Waiting for complex trigger at channels 1 and 2...\n\n");

wbkSetComplexTrig(chans_tr, gains_tr, polarity_tr, rising, levels, hysteresis, NUM_TRIG,
opstr);

This command arms the system to acquire data. Since no pre-trigger scans were configured, no data
will be available until the trigger is satisfied.

wbkArm();

The next line performs a foreground data transfer from the WaveBook's internal buffer to the PC's
memory. The foreground transfer will continue until its buffer is full or the acquisition is complete. If
the trigger is not satisfied within the programmed time-out, the driver will return control to the
program. If you do not want your program to "hang" until the trigger is satisfied, it is recommended
that a background transfer be used. Once your program initiates a background transfer, control is
passed back to your program to perform other tasks while waiting for a trigger or collecting data.

wbkBufferTransfer(buf, SCANS, 0, 1, 1, &active, &retCount);

Print the transferred data.

 printf("Results of BufferTransfer:\n");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", i + 1);
 for (j = 0; j < retCount; j++) printf(" %6d", buf[i + j * CHANS]);
 }

Pre- and Post-Trigger Acquisitions
The following excerpts are from the example program ADCEX6.C. This program shows how to setup
and process acquisitions with both pre- and post-trigger scans.

Define constants and a data buffer for the collected data.

#define CHANS 4
#define PRE_SCANS 5
#define POST_SCANS 9
#define PRE_FREQ 100.0
#define POST_FREQ 200.0
#define BLOCK (PRE_SCANS + POST_SCANS)
int _huge buf[BLOCK * CHANS];

Define the channels sequenceof the acquisition.

 chans[0] = 1; // channel numbers
 chans[1] = 3;
 chans[2] = 5;
 chans[3] = 7;
 for(i = 0; i < CHANS; i++) {
 gains[i] = WgcX1; // unity gain
 polarities[i] = 1; // bipolar
 }

Enable data packing

wbkSetDataPacking(1);

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamPrePost-specifies that both pre- and post-trigger scans are to be collected. An acquisition is
defined as a specified number of pre- and post-trigger scans sampled at a specified timebase. The 2nd
and 3rd arguments define the number of pre- and post-trigger scans, respectively.

wbkSetAcq(WamPrePost, PRE_SCANS, POST_SCANS);

Set the scan configuration.

wbkSetScan(chans, gains, polarities, CHANS);

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-9

This command sets the pre- and post-trigger sample frequencies.

wbkSetFreq(PRE_FREQ, POST_FREQ);

Set the trigger source to an analog trigger on channel 1 at 2 volts

wbkSetTrigAnalog(1, WgcX1, 1, WctRisingEdge, 2.0, 0.1);

This command arms the system to acquire data. Since pre-trigger scans are to be collected, scans will
be immediately available for transfer into the PC's memory.

wbkArm();

When pre-trigger scans are included in the acquisition, scans begin to be acquired the moment the
system is armed. Scans will continue to be acquired until the trigger is satisfied and the post-trigger is
complete. Your application program must transfer the acquired data into a buffer in the PC as it is
collected. Until the trigger occurs, your application must be prepared to accept data continuously,
potentially far in excess of the sum of the specified pre-trigger and post-trigger scan counts. This is best
accomplished by setting up a background transfer in cycle mode which will automatically transfer the
scans as they are collected and wrap the buffer as it becomes full. The following line sets up a
background transfer of the acquired scans into buf. Cycle mode is turned on, allowing the buffer to
wrap around as it becomes full.

wbkBufferTransfer(buf, BLOCK, 1, 0, 0, &active, &retCount);

The following lines monitor the background operation, waiting for the acquisition to be complete.

while (active && !kbhit()) {
wbkGetBackStat(&active, &retCount);
printf("Transfer in progress: %2ld scans acquired.\r", retCount);

}
printf("\acquisition complete.\n\n");

The following line unpacks the data so that each sample occupies an integer.

wbkBufferUnpack(buf, buf, BLOCK, CHANS, retCount);

Since the buffer has potentially wrapped around, the earliest data is not at the beginning of the buffer.
The following line reorganizes the buffer so that the 1st pre-trigger scan occupies the 1st buffer
location and the last post-trigger scan occupies the last buffer location.

wbkBufferRotate(buf, BLOCK, CHANS, retCount);

The following lines print the acquired data.

 printf("Pre-trigger data acquired:\n");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", chans[i]);
 for (j = 0; j < PRE_SCANS; j++) printf(" %6d", buf[i + j * CHANS]);
 }
 printf("\nPost-trigger data acquired:\n");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", chans[i]);
 for (j = PRE_SCANS; j < BLOCK; j++) printf(" %6d", buf[i + j * CHANS]);
 }

Buffer Management
The following excerpts are from the example program ADCEX7.C found in the WaveBook directory of
your hard drive. This example demonstrates using double buffering in the background mode, so that
data can be read into one buffer while the another buffer can be processed in the foreground.

Define constants and a data buffer for the collected data.

 #define CHANS 8
 #define SCANS 20000
 #define BLOCK 1000
 #define FREQ 5000.0

 int _huge buf0[CHANS * BLOCK];
 int _huge buf1[CHANS * BLOCK];

Using WaveBook/512 with C Chapter 6

6-10 WaveBook User’s Manual

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post- trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

 wbkSetAcq(WamNShot, 0, SCANS);

The wbkSetMux command defines the channels in a scan. The 1st and 2nd arguments define the start
and end channels of the scan. Unlike the command wbkSetScan, this command does not allow a
separate gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the
scan in a random order.

 wbkSetMux(1, CHANS, WgcX1, 1);

Next, the pre- and post-trigger sample frequencies are set. Since this application does not collect pre-
trigger scans, the 1st argument is ignored.

 wbkSetFreq(1.0, FREQ);

The trigger source is set to Software. This trigger is satisfied by the execution of the command
wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog channel. In
this case, the voltage level argument is ignored.

 wbkSetTrigHardware(WtsSoftware, 0.0f);

This system is then armed to acquire data. For the present configuration, the data will not be collected
until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

 wbkArm();

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

 wbkSoftTrig();

Start the data transfer into the first buffer

 transferBuf = buf0;
 processBuf = buf1;
 wbkBufferTransfer(transferBuf, BLOCK, 0, 0, 0, &tmpActive, &tmpRetCount);

The contents of the two buffers are swapped. The loop continues until the acquisition completes or the
buffer fills.

 do {
 // Swap the previous and next buffer pointers
 tmpBuf = processBuf;
 processBuf = transferBuf;
 transferBuf = tmpBuf;

Wait for the acquisition to go inactive or the buffer to be filled.

 do {
 wbkGetBackStat(&active, &retCount);
 } while (active && (retCount < BLOCK));

If the previous acquisition is still active, another transfer into the next buffer begins.

 if (active) {
 wbkBufferTransfer(transferBuf, BLOCK, 0, 0, 0, &tmpActive, &tmpRetCount);
 }

The following commands average the data in the process buffer and print the results.

 if (retCount) {
 // Average the readings in the process buffer and print the results
 for(j = 0; j < CHANS; j++) {
 totals[j] = 0;
 }
 for(i = 0; i < retCount; i++) {
 for(j = 0; j < CHANS; j++) {
 totals[j] += processBuf[i * CHANS + j];
 }
 }
 printf("Averages:");
 for(j = 0; j < CHANS; j++) {

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-11

 printf(" %6.3f", (5.0 * totals[j]) / (32768.0 * retCount));
 }
 printf("\n");
 }
 } while (active);

Direct-to-Disk
The following excerpts are from the example program ADCEX8.C. This example reads multiple scans
from multiple channels and writes the data directly to a disk file.

Define constants and a data buffer for the collected data.

#define CHANS 2
#define SCANS 100000L
#define FREQ 10000.0
#define BLOCK 2000 // CHANS * BLOCK must be a multiple of 4

 int _huge buf[CHANS * BLOCK];

Enable data packing

 wbkSetDataPacking(1);

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post- trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

 wbkSetAcq(WamNShot, 0, SCANS);

The wbkSetMux command defines the channels in a scan. The 1st and 2nd arguments define the start
and end channels of the scan. Unlike the command wbkSetScan, this command does not allow a
separate gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the
scan in a random order.

 wbkSetMux(1, CHANS, WgcX1, 1);

The pre- and post-trigger sample frequencies are next set. Since this application does not collect pre-
trigger scans, the 1st argument is ignored.

 wbkSetFreq(1.0, FREQ);

The wbkSetTrigHardware command sets the trigger source to Software. This trigger is satisfied by the
execution of the command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger
source is an analog channel. In this case, the voltage level argument is ignored.

 wbkSetTrigHardware(WtsSoftware, 0.0f);

Arm the system to acquire data. For the present configuration, the data will not be collected until the
software trigger has been satisfied by the execution of the wbkSoftTrig command.

 wbkArm();

Create a filename ADCEX8.BIN for the file that will hold the data with the wbkSetDiskFile command.
No pre-write is used.

 wbkSetDiskFile("adcex8.bin", WdfWriteFile, 0L);

Start reading data in the background mode with cycle mode on and updateSingle off

 wbkBufferTransfer(buf, BLOCK, 1, 0, 0, &active, &retCount);

The next line triggers the system for data collection.

 wbkSoftTrig();

The following commands monitor the progress of the background transfer. The program prints a
running total of the number of scans acquired.

 while (active) {
 wbkGetBackStat(&active, &retCount);
 printf("Transfer in progress: %2ld scans acquired.\r", retCount);
 }

Once the transfer has finished, a completion message is printed.

 printf("\nAcquisition complete.\n\n");

Using WaveBook/512 with C Chapter 6

6-12 WaveBook User’s Manual

After the acquisition has finished, the collected binary data will be converted to ascii format for display
as a text file. The process starts with reading binary data from the ADCEX8.BIN file. If the file
cannot be opened, an error is issued

 printf("Converting adcex8.bin to adcex8.txt...\n");
 in = open("adcex8.bin", O_RDONLY | O_BINARY);
 if (in == -1) {
 printf("Unable to open adcex8.bin\n");
 exit(1);
 }

Next, a text file is created to hold the converted data. If the file cannot be created, an error is issued.

 fout = fopen("adcex8.txt", "wt+");
 if (fout == NULL) {
 printf("Unable to open adcex8.txt\n");
 exit(1);
 }

The binary data is converted to ascii and transferred to the text file. Errors are generated if the program
cannot read from ADCEX8.BIN or write to ADCEX8.TXT.

Convert BLOCK unpacked scans to packed bytes

 do {
 scanCount = BLOCK;
 sampleCount = scanCount * CHANS;
 wordCount = sampleCount * 3 / 4;
 byteCount = sizeof(int) * wordCount;

Read the packed bytes from the input file and get the number of bytes actually read

 byteCount = read(in, buf, byteCount);
 if (byteCount == -1) {
 printf("Unable to read from adcex8.bin\n");
 exit(1);
 }

Convert the number of bytes read from packed bytes to unpacked scans

 wordCount = byteCount / sizeof(int);
 sampleCount = wordCount * 4 / 3;
 scanCount = sampleCount / CHANS;

Unpack the packed data using the same buffer. This command can be called even if the WaveBook if
not online or connected.

 wbkBufferUnpack(buf, buf, BLOCK, CHANS, scanCount);

The contents of the text file containing the data are displayed.

 for (i = 0; i < scanCount; i++) {
 for (j = 0; j < CHANS; j++) {
 // Send a tab between channels and a newline after each scan
 if (j < CHANS - 1) {
 termChar = '\t';
 } else {
 termChar = '\n';
 }

The voltage values are calculated and printed.

 voltage = (float)buf[i * CHANS + j] * 5.0f / 32768.0f;
 if (fprintf(fout, "%.3f%c", voltage, termChar) == EOF) {
 printf("Unable to write to adcex8.txt\n");
 exit(1);
 }
 }
 }

The program prints a character to indicate that it is still active.

 printf(".");

 } while (byteCount > 0); // A byteCount of 0 indicates end-of-file

The files are closed

 close(in);
 fclose(fout);

A completion message is printed.

 printf("complete.\n");

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-13

Sample Programs

ADCEX1.C
// This example demonstrates the use of the WaveBook's one-step
// acquisition functions and user error handling.
// Functions used:
// wbkRd(chan, sample, gain, polarity);
// wbkRdN(chan, buf, count, trigger, level, freq, gain, polarity);
// wbkRdScan(startChan, endChan, buf, gain, polarity);
// wbkRdScanN(startChan, endChan, buf, count, trigger, level, freq,
// gain, polarity);
// wbkSetErrHandler(wbkErrorHandler);
// wbkInit(lptPort, lptIntr);
// wbkClose();
#include <stdio.h>
#include <stdlib.h>
#include "wbk.h"
#define CHANS 8
#define SCANS 9
#define FREQ 1000.0
#define GAIN WgcX1
#define BIPOLAR 1
void _far _pascal myhandler(int error_code);
int _huge buf[CHANS * SCANS];
void
main(void)
{
 unsigned int i, j;
 int sample;
printf("\nADCEX1.C\n");
// Set error handler and initialize WaveBook
 wbkSetErrHandler(myhandler);
 wbkInit(LPT1, 7);
// Get a single sample from a single channel
 wbkRd(1, &sample, GAIN, BIPOLAR);
// Print result
 printf("Result of Rd: %6d\n", sample);
// Get multiple samples from a single channel, triggered by a software trigger
 wbkRdN(1, buf, SCANS, WtsSoftware, 0.0f, FREQ, GAIN, BIPOLAR);
// Print results
 printf("Results of RdN:");
 for(i = 0; i < SCANS; i++) printf(" %6d", buf[i]);

 // Get a single sample from multiple channels
 wbkRdScan(1, CHANS, buf, GAIN, BIPOLAR);

 // Print results
 printf("\n\nResults of RdScan:\n");
 for(i = 0; i < CHANS; i++) printf("Channel %2d Data: %6d\n", i + 1, buf[i]);

 // Get multiple samples from multiple channels, triggered by a software trigger
 wbkRdScanN(1, CHANS, buf, SCANS, WtsSoftware, 0.0f, FREQ, GAIN, BIPOLAR);

 // Print results
 printf("\nResults of RdScanN:");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", i + 1);
 for(j = 0; j < SCANS; j++) printf(" %6d",buf[(j * CHANS) + i]);
 }

 // Close and exit
 wbkClose();
}

void _far _pascal
myhandler(int error_code)
{
 printf("\nError! Program aborted\nWaveBook Error: 0x%02x\n",error_code);
 exit(1);
}

Using WaveBook/512 with C Chapter 6

6-14 WaveBook User’s Manual

ADCEX2.C
// This example demonstrates the use of WaveBook's custom acquistion functions.
// Functions used:
// wbkSetAcq(mode, preTrigCount, postTrigCount);
// wbkSetMux(startChan, endChan, gain, polarity);
// wbkSetFreq(preTrigFreq, postTrigFreq);
// wbkGetFreq(preTrigFreq, postTrigFreq);
// wbkGetPeriod(preTrigPeriod, postTrigPeriod);
// wbkSetTrigHardware(source, level);
// wbkArm();
// wbkSoftTrig();
// wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground,
// active, retCount);
// wbkInit(lptPort, lptIntr);
// wbkClose();
#include <stdio.h>
#include "wbk.h"
#define CHANS 8
#define SCANS 10
#define BLOCK 6
#define FREQ 5.0
int _huge buf[CHANS * BLOCK];
void
main(void)
{
 unsigned int i, j;
 unsigned char active;
 unsigned long retCount;
 double preTrigFreq, postTrigFreq;
 double preTrigPeriod, postTrigPeriod;
printf("\nADCEX2.C\n\n");
// Initialize WaveBook
 wbkInit(LPT1, 7);
// Set the acquisition to NShot on trigger and the post-trigger scan count
 wbkSetAcq(WamNShot, 0, SCANS);
// Set the scan configuration
 wbkSetMux(1, CHANS, WgcX1, 1);
// Set the post-trigger scan rates
 wbkSetFreq(1.0, FREQ);
// Get the pre-trigger and post-trigger scan rates in frequency and period
 wbkGetFreq(&preTrigFreq, &postTrigFreq);
 printf("Result wbkGetFreq: pre-trigger=%.2fHz, post-trigger=%.2fHz\n",
 preTrigFreq, postTrigFreq);
 wbkGetPeriod(&preTrigPeriod, &postTrigPeriod);
 printf("Result wbkGetPeriod: pre-trigger=%.0fns, post-trigger=%.0fns\n",
 preTrigPeriod, postTrigPeriod);
// Set the trigger source to a software trigger command
 wbkSetTrigHardware(WtsSoftware, 0.0f);
// Arm the acquisition
 wbkArm();
// Issue a software trigger command to the hardware
 wbkSoftTrig();

 do {
 // Read BLOCK scans from the hardware with cycle mode off,
 // updateSingle on and foreground enabled
 wbkBufferTransfer(buf, BLOCK, 0, 1, 1, &active, &retCount);

 // Print results
 printf("\nResult wbkBufferTransfer: retCount=%lu, active=%d", retCount,
 (int)active);
 for(i = 0; i < retCount; i++) {
 printf("\nScan %5d:", i + 1);
 for(j = 0; j < CHANS; j++) {
 printf(" %6d", buf[i * CHANS + j]);
 }
 }
 } while (active != 0);

 //Close and exit
 wbkClose();
}

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-15

ADCEX3.C
// This example takes multiple scans from hardware using a software trigger.
// Each scan includes the high speed digital I/O port (channel 0) and
// two analog channels: 5 and 8.
// Functions used:
// wbkSetAcq(mode, preTrigCount, postTrigCount);
// wbkSetScan(chans, gains, polarities, count);
// wbkSetFreq(preTrigFreq, postTrigFreq);
// wbkSetTrigHardware(source, level);
// wbkArm();
// wbkSoftTrig();
// wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground,
// active, retCount);
// wbkGetDriverVersion(version);
// wbkInit(lptPort, lptIntr);
// wbkClose();
#include <stdio.h>
#include "wbk.h"
#define FREQ 5
#define SCANS 10
#define CHANS 3
int _huge buf[CHANS * SCANS];
void
main(void)
{
 unsigned int i, j;
 unsigned int version;
 unsigned int chans[CHANS];
 unsigned char gains[CHANS], polarities[CHANS];
 unsigned char active;
 unsigned long retCount;
 printf("\nADCEX3.C\n\n");
 // Scan sequence definition
 chans[0] = 0; // high speed digital channel
 chans[1] = 5; // analog channel 5
 chans[2] = 8; // analog channel 8
 // Channel gains and polarities setting
 for(i = 0; i < CHANS; i++) {
 gains[i] = WgcX1; // unity gain
 polarities[i] = 1; // bipolar
 }
 // Get driver version
 wbkGetDriverVersion(&version);
 printf("Using driver version %f\n\n", 0.01 * version);
 // Initialize WaveBook
 wbkInit(LPT1, 7);
 // Set the acquisition to NShot on trigger and the post-trigger scan count
 wbkSetAcq(WamNShot, 0, SCANS);
 // Set the scan configuration
 wbkSetScan(chans, gains, polarities, CHANS);
 // Set the post-trigger scan rates
 wbkSetFreq(1.0, FREQ);
 // Set the trigger source to a software trigger command
 wbkSetTrigHardware(WtsSoftware, 0.0f);
 // Arm the acquisition
 wbkArm();
 // Issue a software trigger command to the hardware
 wbkSoftTrig();
 // Read SCANS scans from the hardware with cycle mode off,
 // updateSingle on and foreground enabled
 wbkBufferTransfer(buf, SCANS, 0, 1, 1, &active, &retCount);
 // Print results
 printf("Results of BufferTransfer:\n");
 printf("Scan Digital_ch_0 Analog_ch_5 Analog_ch_8");
 for(i = 0; i < retCount; i++) {
 // get the upper (valid) 8 bits of the digital input
 buf[CHANS * i] = (unsigned int)buf[CHANS * i] >> 8;
 printf("\n %2d ", i + 1);
 for(j = 0; j < CHANS; j++) printf(" %6d ", buf[CHANS * i + j]);
 }
 //Close and exit
 wbkClose();
}

Using WaveBook/512 with C Chapter 6

6-16 WaveBook User’s Manual

ADCEX4.C
// This example reads scans of multiple channels in the background mode
// and uses a software trigger to start the acquisition.
// Functions used:
// wbkSetAcq(mode, preTrigCount, postTrigCount);
// wbkSetFreq(preTrigFreq, postTrigFreq);
// wbkSetMux(startChan, endChan, gain, polarity);
// wbkSetTrigHardware(source, level);
// wbkArm();
// wbkSoftTrig();
// wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground,
// active, retCount);
// wbkGetBackStat(active, retCount);
// wbkInit(lptPort, lptIntr);
// wbkClose();
#include <stdio.h>
#include "wbk.h"
#define CHANS 8
#define SCANS 9
#define FREQ 2.0
int _huge buf[CHANS * SCANS];

void
main(void)
{
 unsigned int i, j;
 unsigned char active;
 unsigned long retCount;

 printf("\nADCEX4.C\n\n");

 // Initialize WaveBook
 wbkInit(LPT1, 7);

 // Set the acquisition to NShot on trigger and the post-trigger scan count
 wbkSetAcq(WamNShot, 0, SCANS);

 // Set the scan configuration
 wbkSetMux(1, CHANS, WgcX1, 1);

 // Set the post-trigger scan rates
 wbkSetFreq(1.0, FREQ);

 // Set the trigger source to a software trigger command
 wbkSetTrigHardware(WtsSoftware, 0.0f);

 // Arm the acquisition
 wbkArm();

 // Start reading data in the background mode with cycle mode off
 // and updateSingle on
 wbkBufferTransfer(buf, SCANS, 0, 1, 0, &active, &retCount);

 // Issue a software trigger command to the hardware
 wbkSoftTrig();

 // Monitor the progress of the background transfer
 while (active) {
 wbkGetBackStat(&active, &retCount);
 printf("Transfer in progress: %2ld scans acquired.\r", retCount);
 }
 printf("\nAcquisition complete.\n\n");

 // Print results
 printf("Data acquired:\n");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", i + 1);
 for (j = 0; j < retCount; j++) printf(" %6d", buf[i + j * CHANS]);
 }

 // Close and Exit
 wbkClose();
}

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-17

ADCEX5.C
// This example takes multiple scans from hardware using a complex analog
// trigger. The acquisition will start on a rising-edge of channel 1 at
// 2 volts OR a falling edge on channel 2 at 3 volts.
// Functions used:
// wbkSetAcq(mode, preTrigCount, postTrigCount);
// wbkSetMux(startChan, endChan, gain, polarity);
// wbkSetFreq(preTrigFreq, postTrigFreq);
// wbkSetTrigComplex(chans, gains, polarities, rising, levels,
// hysteresis, count, opstr);
// wbkArm();
// wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground,
// active, retCount);
// wbkInit(lptPort, lptIntr);
// wbkClose();
#include <stdio.h>
#include "wbk.h"
#define FREQ 1000
#define SCANS 9
#define CHANS 3
#define NUM_TRIG 2
int _huge buf[CHANS * SCANS];
void
main(void)
{
 unsigned int i, j;
 unsigned char active;
 unsigned long retCount;

 // Initialize the complex trigger arrays for a rising-edge on channel 1
 // at 2 volts OR a falling-edge on channel 2 at 3 volts
 unsigned int chans_tr[NUM_TRIG] = { 1, 2 };
 unsigned char gains_tr[NUM_TRIG] = { WgcX1, WgcX1 },
 polarity_tr[NUM_TRIG] = { 1, 1 },
 rising[NUM_TRIG] = { WctRisingEdge, WctFallingEdge };
 float levels[NUM_TRIG] = { 2.0f, 3.0f },
 hysteresis[NUM_TRIG] = { 0.1f, 0.1f };
 char *opstr = "+";

 printf("\nADCEX5.C\n\n");

 // Initialize WaveBook
 wbkInit(LPT1, 7);

 // Set the acquisition to NShot on trigger and the post-trigger scan count
 wbkSetAcq(WamNShot, 0, SCANS);

 // Set the scan configuration
 wbkSetMux(1, CHANS, WgcX1, 1);

 // Set the post-trigger scan rates
 wbkSetFreq(1.0, FREQ);

 // Set the trigger source to the complex trigger previously defined
 printf("Waiting for complex trigger of channels 1 or 2...\n\n");
 wbkSetTrigComplex(chans_tr, gains_tr, polarity_tr, rising, levels,
 hysteresis, NUM_TRIG, opstr);

 // Arm the acquisition
 wbkArm();

 // Read SCANS scans from the hardware with cycle mode off,
 // updateSingle on and foreground enabled
 wbkBufferTransfer(buf, SCANS, 0, 1, 1, &active, &retCount);
 // Print results
 printf("Results of BufferTransfer:\n");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", i + 1);
 for (j = 0; j < retCount; j++) printf(" %6d", buf[i + j * CHANS]);
 }
 //Close and exit
 wbkClose();

Using WaveBook/512 with C Chapter 6

6-18 WaveBook User’s Manual

ADCEX6.C
// This example demonstrates an acquisition made up of pre-trigger and
// post-trigger scans from multiple channels using a DSP-based analog
// trigger. It also uses data packing and rotating.
// Functions used:
// wbkSetAcq(mode, preTrigCount, postTrigCount);
// wbkSetFreq(preTrigFreq, postTrigFreq);
// wbkSetScan(chans, gains, polarities, chanCount);
// wbkSetTrigAnalog(chan, gain, polarity, rising, level, hysteresis);
// wbkArm();
// wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground,
// active, retCount);
// wbkBufferUnpack(packedBuf, unpackedBuf, scanCount, chanCount, retCount);
// wbkBufferRotate(buf, scanCount, chanCount, retCount);
// wbkGetBackStat(active, retCount);
// wbkInit(lptPort, lptIntr);
// wbkClose();
#include <stdio.h>
#include "wbk.h"
#define CHANS 4
#define PRE_SCANS 5
#define POST_SCANS 9
#define PRE_FREQ 100.0
#define POST_FREQ 200.0
#define BLOCK (PRE_SCANS + POST_SCANS)
int _huge buf[BLOCK * CHANS];
void
main(void)
{
 unsigned int i, j;
 unsigned int chans[CHANS];
 unsigned char gains[CHANS], polarities[CHANS];
 unsigned char active;
 unsigned long retCount;
 printf("\nADCEX6.C\n");
 // Scan definition
 chans[0] = 1; // channel numbers
 chans[1] = 3;
 chans[2] = 5;
 chans[3] = 7;
 for(i = 0; i < CHANS; i++) {
 gains[i] = WgcX1; // unity gain
 polarities[i] = 1; // bipolar
 }
 // Initialize WaveBook
 wbkInit(LPT1, 7);
 // Enable data packing
 wbkSetDataPacking(1);
 // Set the acquisition for pre/post-trigger mode and the scan counts
 wbkSetAcq(WamPrePost, PRE_SCANS, POST_SCANS);
 // Set the scan configuration
 wbkSetScan(chans, gains, polarities, CHANS);
 // Set the pre-trigger and post-trigger scan rates
 wbkSetFreq(PRE_FREQ, POST_FREQ);
 // Set the trigger source to an analog trigger on channel 1 at 2 volts
 wbkSetTrigAnalog(1, WgcX1, 1, WctRisingEdge, 2.0f, 0.1f);
 // Arm the acquisition
 wbkArm();
 // Start reading data in the background mode with cycle mode on
 // and updateSingle off
 wbkBufferTransfer(buf, BLOCK, 1, 0, 0, &active, &retCount);
 // Monitor the progress of the background transfer
 while (active) {
 wbkGetBackStat(&active, &retCount);
 printf("Transfer in progress: %2ld scans acquired.\r", retCount);
 }
 printf("\nAcquisition complete.\n");
 // Unpack the packed data using the same buffer
 wbkBufferUnpack(buf, buf, BLOCK, CHANS, retCount);
 // Rotate the unpacked data so that the earliest data starts at the
 // beginning of the buffer and the latest is at the end
 wbkBufferRotate(buf, BLOCK, CHANS, retCount);
 // Print results

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-19

 printf("Pre-trigger data acquired:\n");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", chans[i]);
 for (j = 0; j < PRE_SCANS; j++) printf(" %6d", buf[i + j * CHANS]);
 }
 printf("\nPost-trigger data acquired:\n");
 for(i = 0; i < CHANS; i++) {
 printf("\nChannel %2d Data:", chans[i]);
 for (j = PRE_SCANS; j < BLOCK; j++) printf(" %6d", buf[i + j * CHANS]);
 }
 // Close and Exit
 wbkClose();
}

ADCEX7.C
// This example demonstrates using double buffering in the background
// mode, so that data can be read into one buffer while the another buffer
// can be processed in the foreground.
//
// Functions used:
// wbkSetAcq(mode, preTrigCount, postTrigCount);
// wbkSetMux(startChan, endChan, gain, polarity);
// wbkSetFreq(preTrigFreq, postTrigFreq);
// wbkSetTrigHardware(source, level);
// wbkArm();
// wbkSoftTrig();
// wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground,
// active, retCount);
// wbkGetBackStat(active, retCount);
// wbkInit(lptPort, lptIntr);
// wbkClose();
#include <stdio.h>
#include "wbk.h"
#define CHANS 8
#define SCANS 20000
#define BLOCK 1000
#define FREQ 5000.0
int _huge buf0[CHANS * BLOCK];
int _huge buf1[CHANS * BLOCK];
void
main(void)
{
 unsigned int i, j;
 unsigned char active;
 unsigned long retCount;
 unsigned char tmpActive;
 unsigned long tmpRetCount;
 long totals[CHANS];
 int _huge *tmpBuf;
 int _huge *transferBuf;
 int _huge *processBuf;
 printf("\nADCEX7.C\n\n");

 // Initialize WaveBook
 wbkInit(LPT1, 7);

 // Set the acquisition to NShot on trigger and the post-trigger scan count
 wbkSetAcq(WamNShot, 0, SCANS);

 // Set the scan configuration
 wbkSetMux(1, CHANS, WgcX1, 1);

 // Set the post-trigger scan rates
 wbkSetFreq(1.0, FREQ);

 // Set the trigger source to a software trigger command
 wbkSetTrigHardware(WtsSoftware, 0.0f);

 // Arm the acquisition
 wbkArm();

 // Issue a software trigger command to the hardware

Using WaveBook/512 with C Chapter 6

6-20 WaveBook User’s Manual

 wbkSoftTrig();

 // Start reading data into the first buffer
 transferBuf = buf0;
 processBuf = buf1;
 wbkBufferTransfer(transferBuf, BLOCK, 0, 0, 0, &tmpActive, &tmpRetCount);

 do {
 // Swap the previous and next buffer pointers
 tmpBuf = processBuf;
 processBuf = transferBuf;
 transferBuf = tmpBuf;

 // Wait for the acquisition to go inactive or the buffer to be filled
 do {
 wbkGetBackStat(&active, &retCount);
 } while (active && (retCount < BLOCK));

 // If the previous acquisition is still active, start another transfer
 // into the next buffer
 if (active) {
 wbkBufferTransfer(transferBuf, BLOCK, 0, 0, 0, &tmpActive, &tmpRetCount);
 }

 // Process the data into the process buffer
 if (retCount) {
 // Average the readings in the process buffer and print the results
 for(j = 0; j < CHANS; j++) {
 totals[j] = 0;
 }
 for(i = 0; i < retCount; i++) {
 for(j = 0; j < CHANS; j++) {
 totals[j] += processBuf[i * CHANS + j];
 }
 }
 printf("Averages:");
 for(j = 0; j < CHANS; j++) {
 printf(" %6.3f", (5.0 * totals[j]) / (32768.0 * retCount));
 }
 printf("\n");
 }
 } while (active);

 //Close and exit
 wbkClose();
}

ADCEX8.C
// This example reads multiple scans from multiple channels and writes the
// data directly a disk file in a packed format.
//
// Function used:
// wbkSetAcq(mode, preTrigCount, postTrigCount);
// wbkSetFreq(preTrigFreq, postTrigFreq);
// wbkSetMux(startChan, endChan, gain, polarity);
// wbkSetTrigHardware(source, level);
// wbkArm();
// wbkSoftTrig();
// wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground,
// active, retCount);
// wbkGetBackStat(active, retCount);
// wbkBufferUnpack(packedBuf, unpackedBuf, scanCount, chanCount, retCount);
// wbkInit(lptPort, lptIntr);
// wbkClose();
#include <stdio.h>
#include <stdlib.h>
#include <io.h>
#include <fcntl.h>
//#include <sys/stat.h>
#include "wbk.h"
#define CHANS 2
#define SCANS 100000L

Chapter 6 Using WaveBook/512 with C

WaveBook User’s Manual 6-21

#define FREQ 10000.0
#define BLOCK 2000 // CHANS * BLOCK must be a multiple of 4
int _huge buf[CHANS * BLOCK];
void
main(void)
{
 unsigned int i, j;
 unsigned char active;
 unsigned long retCount;
 int in;
 FILE *fout;
 int byteCount;
 unsigned int wordCount, sampleCount, scanCount;
 char termChar;
 float voltage;

 printf("\nADCEX8.C\n\n");

 // Set error handler and initialize WaveBook
 wbkInit(LPT1, 7);

 // Enable data packing
 wbkSetDataPacking(1);

 // Set the acquisition to NShot on trigger and the post-trigger scan count
 wbkSetAcq(WamNShot, 0, SCANS);

 // Set the scan configuration
 wbkSetMux(1, CHANS, WgcX1, 1);

 // Set the post-trigger scan rate
 wbkSetFreq(1.0, FREQ);

 // Set the trigger source to a software trigger command
 wbkSetTrigHardware(WtsSoftware, 0.0f);

 // Arm the acquisition
 wbkArm();

 // Set the direct-to-disk filename with no pre-write
 wbkSetDiskFile("adcex8.bin", WdfWriteFile, 0L);

 // Start reading data in the background mode with cycle mode on
 // and updateSingle off
 wbkBufferTransfer(buf, BLOCK, 1, 0, 0, &active, &retCount);

 // Issue a software trigger command to the hardware
 wbkSoftTrig();

 // Monitor the progress of the background transfer
 while (active) {
 wbkGetBackStat(&active, &retCount);
 printf("Transfer in progress: %2ld scans acquired.\r", retCount);
 }
 printf("\nAcquisition complete.\n\n");

 // Close and Exit
 wbkClose();

 // Convert the binary file just read to a text file
 printf("Converting adcex8.bin to adcex8.txt\n");

 // Open the binary input file
 in = open("adcex8.bin", O_RDONLY | O_BINARY);
 if (in == -1) {
 printf("Unable to open adcex8.bin\n");
 exit(1);
 }

 // Open the text output file
 fout = fopen("adcex8.txt", "wt+");
 if (fout == NULL) {
 printf("Unable to open adcex8.txt\n");
 exit(1);
 }

Using WaveBook/512 with C Chapter 6

6-22 WaveBook User’s Manual

 do {
 // Convert BLOCK unpacked scans to packed bytes
 scanCount = BLOCK;
 sampleCount = scanCount * CHANS;
 wordCount = sampleCount * 3 / 4;
 byteCount = sizeof(int) * wordCount;

 // Read the packed bytes from the input file and get the number
 // of bytes actually read
 byteCount = read(in, buf, byteCount);
 if (byteCount == -1) {
 printf("Unable to read from adcex8.bin\n");
 exit(1);
 }

 // Convert the number of bytes read from packed bytes to unpacked scans
 wordCount = byteCount / sizeof(int);
 sampleCount = wordCount * 4 / 3;
 scanCount = sampleCount / CHANS;

 // Unpack the packed data using the same buffer. This command
 // can be called even if the WaveBook if not online or connected.
 wbkBufferUnpack(buf, buf, BLOCK, CHANS, scanCount);

 // Write the scans read and unpacked to the text file
 for (i = 0; i < scanCount; i++) {
 for (j = 0; j < CHANS; j++) {
 // Send a tab between channels and a newline after each scan
 if (j < CHANS - 1) {
 termChar = '\t';
 } else {
 termChar = '\n';
 }

 // calculate and write out the voltage value
 voltage = (float)buf[i * CHANS + j] * 5.0f / 32768.0f;
 if (fprintf(fout, "%.3f%c", voltage, termChar) == EOF) {
 printf("Unable to write to adcex8.txt\n");
 exit(1);
 }
 }
 }

 // Print something so that the program doesn't appear locked
 printf(".");
 } while (byteCount > 0); // A byteCount of 0 indicates end-of-file

 // Close the input and output files
 close(in);
 fclose(fout);

 printf("complete.\n");
}

Using WaveBook/512 with QuickBASIC 7

WaveBook User’s Manual 7-1

This chapter describes the use of the QuickBASIC language with the standard API to develop a basic
data acquisition program. For additional functions of the standard API, refer to chapter 10. Note: The
WaveBook system includes full-featured DOS and Windows software drivers for C (chapter 6),
QuickBASIC, Turbo Pascal (chapter 8), and Visual Basic (chapter 9). The enhanced API (for C,
Visual Basic and Delphi) is described in chapters 11 and 12.

There is a library, a quick library and a basic interface file located in the WAVEBOOK\DOS\QB
directory. The Basic interface file, WBK.BI, must be included at the top of a QuickBASIC program
using the '$INCLUDE command. This will allow QuickBASIC to know what WaveBook/512
functions and constants are available. The library WAVEBOOK.LIB must be included during the link
process when creating a program from the DOS command line. The /NOE option of the linker may be
necessary when linking the WaveBook/512 library. Alternatively, the quick library,
WAVEBOOK.QLB can be used to access the WaveBook/512 from within the QuickBASIC
environment. Use the /L option of QuickBASIC to load the appropriate Quick Library. See the
QuickBASIC documentation for the various command line options.

To run an example program located in the WAVEBOOK\DOS\QB directory, start QuickBASIC using
the /L option, such as QB /LTBKBOOK.QLB. Then load and run the desired program. The example
program could also be compiled using QuickBASIC's BC.EXE compiler to create a .OBJ file. This
.OBJ could then be linked to the WAVEBOOK.LIB file using QuickBASIC's LINK.EXE linker.

Using Multiple Quick Libraries with QuickBASIC
If you need to use more than one quick library with your application program, you will need to create a
combined library. The first step is to extract the object modules from WAVBOOK.LIB using the LIB
program provided with QuickBASIC:

C:\QB45 LIB wbkbook *lowqb *highqb *highcqb *stubstb *tcqb

Next, you need to link the object modules along with your other libraries into the combined Quick
Library using the LINK program provided with QuickBASIC. The following example creates a Quick
Library called COMBINED.QLB from the WaveBook object modules and USEROBJ.OBJ:

C:\QB45LINK
Object Modules [.OBJ]: lowqb+highbqb+hgihcqb+stubsqb+tcqb+userobj
Run File [LOWQB.EXE]: combined.qbl /q
List File [NUL.MAP]: /noe
Libraries [.LIB]: bqlb45

Simple Analog Input
The following program, ADCEX1.BAS, shows the usage of several high level analog input routines.

This program will initialize the WaveBook hardware, then take readings from the the analog input
channels in the base unit (not the expansion cards).

Every program begins with an INCLUDE directive which defines useful constants and declarations that
are used throughout the program.

'$INCLUDE: 'wbk.bi'

For transporting data in and out of the WaveBook driver, arrays are dimensioned.

DIM buf%(SCANS& * CHANNELS%)
DIM i%, j%
DIM sample%
DIM ret%

Although not necessary, this program includes an error handler which vectors program control to a user
defined routine when a WaveBook error is detected. If no error handler is supplied, QuickBASIC will
receive and handle the error, posting the error on the screen and terminating the program.

Using WaveBook/512 with QuickBASIC Chapter 7

7-2 WaveBook User’s Manual

QuickBASIC provides an integer variable, ERR, which contains the error code of the most recent error.
This variable can be used in user defined error handlers to detect the error source and take the
appropriate action. The function QBwbkSetErrHandler tells QuickBASIC to assign ERR to a specific
value when a WaveBook error is encountered.

The following line tells QuickBASIC to set ERR to 100 when a WaveBook error is encountered.

ret% = QBwbkSetErrHandler%(100)

The ON ERROR GOTO command is part of the QuickBASIC command set. It allows a user defined
error handler to be provided, rather than the standard error handler that QuickBASIC uses
automatically. The program uses ON ERROR GOTO to vector program control to the label
ErrorHandler if an error is encountered.

ON ERROR GOTO ErrorHandler

The next line tells the driver library which LPT port or base address and what interrupt line is being
used, then initializes the WaveBook hardware.

ret% = QBwbkInit%(LPT1%, IRQ7%)

The next command will retrieve 1 sample at a gain of 1. The polarity setting set to bipolar.

ret% = QBwbkRd%(1, sample%, GAIN%, BIPOLAR%)

The results of the are then printed.

PRINT "Result of Rd :", sample%

Next, 8 samples are acquired from channel 1 using software triggering. A 1000Hz sampling frequancy
is used with unity gain for bipolar signals. The data returned data is stored in the integer array buffer.
The results are then printed.

ret% = QBwbkRdN%(1, buf%(), SCANS&, WtsSoftware%, 0!, FREQ#, GAIN%, BIPOLAR%)

' Print results
PRINT "Results of RdN:"
PRINT "Channel 1 Data: ";
FOR i% = 0 TO SCANS& - 1
 PRINT TAB(i% * 7 + 17); buf%(i%);
NEXT i%

The following command will get 8 samples from a single channel. Channel 1 at a gain of X1 in bipolar
mode is selected. This command requires a trigger to be satisfied before the data is collected. A
trigger source of Software will start the acquisition immediately. The frequency of data collection is
set to 1KHz. The data will be returned in the integer array buf.

ret% = QBwbkRdN%(1, buf%(), SCANS&, WtsSoftware%, 0!, FREQ#, GAIN%, BIPOLAR%)

' Print results
PRINT "Results of RdN:"
PRINT "Channel 1 Data: ";
FOR i% = 0 TO SCANS& - 1
 PRINT TAB(i% * 7 + 17); buf%(i%);
NEXT i%

The following command collects 1 sample from multiple channels. The following function arguments
define a scan starting with channel 1 and ending with channel 8. This command sets all the channels to
the same gain and unipolar/bipolar setting. The data is returned in the array buffer.

ret% = QBwbkRdScan%(1, CHANNELS%, buf%(), GAIN%, BIPOLAR%)

' Print results
PRINT "Results of RdScan:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data: "; buf%(i%)
NEXT i%

The following command collects multiple scans consisting of multiple channels. Like wbkRdScan, this
command sets all the channels to the same gain and unipolar/bipolar setting. Since multiple scans are
being collected, a trigger source and timebase is required. The arguments shown set the trigger source
to Software causing an immediate trigger. The sample frequency of 1Khz.

ret% = QBwbkRdScanN%(1, CHANNELS%, buf%(), SCANS&, WtsSoftware%, 0!, FREQ#, GAIN%,
BIPOLAR%)

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-3

' Print results
PRINT "Results of RdScanN:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data: ";
 FOR j% = 0 TO SCANS& - 1
 PRINT TAB(j% * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%

Low-Level Analog Input
The following excerpts are from the example program ADCEX2.BAS found in the WaveBook
directory of your hard drive. This program shows several examples of the lowest level WaveBook
driver functions. These functions are more complex than the high level functions but allow the greatest
flexibility.

Every program begins with an INCLUDE directive which defines useful constants and declarations that
are used throughout the program.

'$INCLUDE: 'wbk.bi'

Constants and arrays are defined.

CONST CHANNELS% = 8
CONST SCANS& = 10
CONST BLOCK% = 6
CONST FREQ# = 5#

DIM buf%(BLOCK% * CHANNELS%)

DIM i%, j%
DIM active%
DIM retCount&
DIM preTrigFreq#, postTrigFreq#
DIM preTrigPeriod#, postTrigPeriod#
DIM ret%

Set the error handler and initialize the WaveBook.

ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)

The following command defines the channels in a scan. The 1st and 2nd arguments define the start and
end channels of the scan. Unlike the command wbkSetScan, this command does not allow a separate
gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the scan in a
random order.

ret% = QBwbkSetMux%(1, CHANNELS%, WgcX1%, 1)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

ret% = QBwbkSetFreq%(1#, FREQ#)

The following line shows the usage of the wbkGetFreq command which returns the present settings for
the pre- and post-trigger frequencies.

ret% = QBwbkGetFreq%(preTrigFreq#, postTrigFreq#)
PRINT "Result of GetFreq: pre-trigger="; preTrigFreq#; "Hz, post-trigger=";
postTrigFreq#; "Hz"

Using WaveBook/512 with QuickBASIC Chapter 7

7-4 WaveBook User’s Manual

ret% = QBwbkGetPeriod%(preTrigPeriod#, postTrigPeriod#)
PRINT "Result of GetPeriod: pre-trigger="; preTrigPeriod#; "ns, post-trigger=";
postTrigPeriod#; "ns"

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

ret% = QBwbkSetTrigHardware%(WtsSoftware%, 0!)

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

ret% = QBwbkArm%

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

ret% = QBwbkSoftTrig%

A software trigger command is issued to the hardware

ret% = QBwbkSoftTrig%

The following lines perform a foreground transfer from the WaveBook of size BLOCK. The data is
then printed on the screen. The transfers will continue until the acquisition is no longer active.

DO
 ' Read BLOCK scans from the hardware with cycle mode off,
 ' updateSingle on and foreground enabled
 ret% = QBwbkBufferTransfer%(buf%(), BLOCK%, 0, 1, 1, active%, retCount&)

 ' Print results
 PRINT "Result of BufferTransfer: retCount="; retCount&; " active="; active%
 FOR i% = 0 TO retCount& - 1
 PRINT "Scan"; i% + 1; "Data:";
 FOR j% = 0 TO CHANNELS% - 1
 PRINT TAB(j% * 7 + 17); buf%(i% * CHANNELS% + j%);
 NEXT j%
 PRINT
 NEXT i%
 PRINT
LOOP WHILE active% <> 0
Close the WaveBook and exit.
ret% = QBwbkClose%

Accessing the High-Speed Digital Input Port
The following excerpts are from the example program ADCEX3.BAS found in the WaveBook
directory of your hard drive. This program shows how to collect analog and high-speed digital signals
concurrently, in the same scan.

Every program begins with an INCLUDE directive which defines useful constants and declarations that
are used throughout the program.

'$INCLUDE: 'wbk.bi'

Constants and arrays are defined.

CONST FREQ# = 5
CONST SCANS& = 10
CONST CHANNELS% = 3

DIM buf%(SCANS& * CHANNELS%)

DIM i%, j%

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-5

DIM active%
DIM retCount&

DIM version%
DIM chans%(CHANNELS%)
DIM gains%(CHANNELS%), polarities%(CHANNELS%)
DIM ret%

Set channel definitions.

 chans%(0) = 0 ' high speed digital channel
 chans%(1) = 5 ' analog channel 5
 chans%(2) = 8 ' analog channel 8

Set gains and polarities.

FOR i% = 0 TO CHANNELS% - 1
 gains%(i%) = WgcX1% ' unity gain
 polarities%(i%) = 1 ' bipolar
NEXT i%

Set error handler and initialize WaveBook.

ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

 ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)

Setup the scan by passing the channel configuration arrays to the wbkSetScan command.

ret% = QBwbkSetScan%(chans%(), gains%(), polarities%(), CHANNELS%)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

 ret% = QBwbkSetFreq%(1#, FREQ#)

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

 ret% = QBwbkSetTrigHardware%(WtsSoftware%, 0!)

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

 ret% = QBwbkArm%

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

 ret% = QBwbkSoftTrig%

The next line performs a foreground data transfer from the WaveBook's internal buffer to the PC's
memory. The foreground transfer will continue until its buffer is full or the acquisition is complete.

ret% = QBwbkBufferTransfer%(buf%(), SCANS&, 0, 1, 1, active%, retCount&)

The following lines print the transferred data.

 PRINT "Results of BufferTransfer:"

Using WaveBook/512 with QuickBASIC Chapter 7

7-6 WaveBook User’s Manual

PRINT " Digital_ch_0 Analog_ch_5 Analog_ch_8"
FOR i% = 0 TO retCount& - 1
 ' shift the upper (valid) 8 bits of the digital input to the lower 8 bits
 buf%(i% * CHANNELS%) = ((buf%(i% * CHANNELS%) AND &HFF00) \ 256) AND &HFF
 PRINT "Scan"; i% + 1; "Data:";
 FOR j% = 0 TO CHANNELS% - 1
 PRINT TAB(j% * 14 + 17); buf%(i% * CHANNELS% + j%);
 NEXT j%
 PRINT
NEXT i%

Close the WaveBook and exit.

ret% = QBwbkClose%

Background Processing of Analog Input
The following excerpts are from the example program ADCEX4.BAS found in the WaveBook
directory of your hard drive. This program shows how to collect analog samples and transfer them into
the PC's memory in the background. Once the background acquisition is configured and armed, your
program can perform other operations concurrently with the background data collection. The
foreground program can use the wbkGetBackStat command to periodically check the status of the
acquisition.

For performing acquisitions that are greater in size than the allocated buffer, the background operation
can be set to Cycle mode which will wrap around in the allocated buffer as it becomes full. In this
mode, your program must monitor the background and transfer the data out of the allocated buffer
before the background operation overwrites it.

Constants and arrays are first defined.

CONST CHANNELS% = 8
CONST SCANS& = 9
CONST FREQ# = 2

DIM buf%(SCANS& * CHANNELS%)

DIM i%, j%
DIM active%
DIM retCount&
DIM ret%

Set error handler and initialize WaveBook.

ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)

Set the scan's configuration.

ret% = QBwbkSetMux%(1, CHANNELS%, WgcX1%, 1)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

ret% = QBwbkSetFreq%(1#, FREQ#)

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

 ret% = QBwbkSetTrigHardware%(WtsSoftware%, 0!)

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-7

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

 ret% = QBwbkArm%

The scan starts taking readings in the background mode with cycle mode off and updateSingle on.

ret% = QBwbkBufferTransfer%(buf%(), SCANS&, 0, 1, 0, active%, retCount&)

A software trigger is issued.

 ret% = QBbkSoftTrig%

Although your program can begin processing other tasks at this point, our example program simply
monitors the background until the user hits a key or the acquisition is complete.

PRINT "Waiting for trigger."
WHILE retCount& = 0
 ret% = QBwbkGetBackStat%(active%, retCount&)
WEND
PRINT "Triggered. Transfer in progress."
WHILE active% <> 0
 ret% = QBwbkGetBackStat%(active%, retCount&)
WEND
PRINT "Acquisition complete:"; retCount&; "scans acquired."

The following lines print the collected data.

PRINT "Data acquired:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data:";
 FOR j% = 0 TO SCANS& - 1
 PRINT TAB(j% * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%

Close the WaveBook and exit.

ret% = QBwbkClose%

Complex Triggering
The following segments are from the example program ADCEX5.BAS found in the WaveBook
directory of your hard drive. This program shows how to setup a complex trigger where more than one
channel can be combined in a logical trigger equation.

Define constants and declarations and set up arrays.

 '$INCLUDE: 'wbk.bi'
CONST FREQ# = 1000
CONST SCANS& = 9
CONST CHANNELS% = 3
CONST NUMTRIG% = 2

DIM buf%(SCANS& * CHANNELS%)

DIM i%, j%
DIM active%
DIM retCount&
DIM chans%(NUMTRIG%)
DIM gains%(NUMTRIG%), polarity%(NUMTRIG%)
DIM rising%(NUMTRIG%)
DIM levels!(NUMTRIG%), hysteresis!(NUMTRIG%)
DIM opstr$
DIM ret%

The following lines are definitions and initialization for the variables used for setting up the trigger
equation. The variable chans_tr is an array of channels used in the trigger equation. Channels 1 and 2
are specified. The variable gain_tr is an array that holds the gains for channels 1 and 2. In this case
they are both set to X1. Channels 1 and 2 can also be a part of the scan group with the same or
different gain assignments. The variable polarity_tr is an array that holds the unipolar/biploar settings

Using WaveBook/512 with QuickBASIC Chapter 7

7-8 WaveBook User’s Manual

for channels 1 and 2. The variable rising is an array that holds the edge settings for channels 1 and 2.
In this case, channel 1 triggers on the rising edge, while channel 2 triggers on the falling edge. The
variables levels and hysteresis are arrays that hold the voltage thresholds and hysteresis settings for
channels 1 and 2, respectively. The variable opstr holds the boolean operator for the trigger equation.
The + sign indicates an OR operator between channels 1 and 2.

chans%(0) = 1
gains%(0) = WgcX1%
polarity%(0) = 1
rising%(0) = WctRisingEdge%
levels!(0) = 2
hysteresis!(0) = .1

chans%(1) = 2
gains%(1) = WgcX1%
polarity%(1) = 1
rising%(1) = WctFallingEdge%
levels!(1) = 3
hysteresis!(1) = .1

opstr$ = "+"

The previous definitions create the following trigger setup:

System Trigger = (CH1 @ X1, bipolar, rising edge through 2.0V with 0.1V hyst) OR (CH2 @ X1,
bipolar, falling edge through 3.0V with 0.1V hyst)

The following lines set up the error handler and initialize WaveBook

ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)

To create a channel scan of non sequential channels with independent gain and unipolar/bipolar
settings, the arrays of channel parameters must be created and passed to wbkSetScan.

ret% = QBwbkSetMux%(1, CHANNELS%, WgcX1%, 1)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

 ret% = QBwbkSetFreq%(1#, FREQ#)

The following lines notify the user of the system's status then setup the complex trigger.

PRINT "Waiting for complex trigger of channels 1 or 2..."

Next, a complex trigger is set at channels 1 and 2

ret% = QBwbkSetTrigComplex%(chans%(), gains%(), polarity%(), rising%(), levels!(),
hysteresis!(), NUMTRIG%, opstr$)

This command arms the system to acquire data. Since no pre-trigger scans were configured, no data
will be available until the trigger is satisfied.

 ret% = QBwbkArm%

The next line performs a foreground data transfer from the WaveBook's internal buffer to the PC's
memory. The foreground transfer will continue until its buffer is full or the acquisition is complete. If
the trigger is not satisfied within the programmed timeout, the driver will return control to the program.
If you do not want your program to "hang" until the trigger is satisfied, it is recommended that a

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-9

background transfer be used. Once your program initiates a background transfer, control is passed
back to your program to perform other tasks while waiting for a trigger or collecting data.

ret% = QBwbkBufferTransfer%(buf%(), SCANS&, 0, 1, 1, active%, retCount&)

Print the transferred data.

 PRINT "Results of BufferTransfer:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data:";
 FOR j% = 0 TO SCANS& - 1
 PRINT TAB(j% * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%

Close the WaveBook and exit.

ret% = QBwbkClose%

Pre- and Post-Trigger Acquisitions
The following excerpts are from the example program ADCEX6.BAS found in the WaveBook
directory of your hard drive. This program shows how to setup and process acquisitions with both pre-
and post-trigger scans.

Constants, declarations and arrays are defined.

'$INCLUDE: 'wbk.bi'

CONST CHANNELS% = 4
CONST PRESCANS& = 5
CONST POSTSCANS& = 9
CONST PREFREQ# = 100#
CONST POSTFREQ# = 200#
CONST BLOCK% = (PRESCANS& + POSTSCANS&)

DIM buf%(BLOCK% * CHANNELS%)

DIM i%, j%
DIM active%
DIM retCount&
DIM chans%(CHANNELS%)
DIM gains%(CHANNELS%), polarities%(CHANNELS%)
DIM ret%

The following lines set up the error handler and initialize WaveBook

ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)

Scan definitions:

chans%(0) = 1 ' channel numbers
chans%(1) = 3
chans%(2) = 5
chans%(3) = 7
FOR i% = 0 TO CHANNELS% - 1
 gains%(i%) = WgcX1% ' unity gain
 polarities%(i%) = 1 ' bipolar
NEXT i%

 Data packing is enabled.

 ret% = QBwbkSetDataPacking%(1)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamPrePost-specifies that both pre- and post-trigger scans are to be collected. An acquisition is
defined as a specified number of pre- and post-trigger scans sampled at a specified timebase. The 2nd
and 3rd arguments define the number of pre- and post-trigger scans, respectively.

 ret% = QBwbkSetAcq%(WamPrePost%, PRESCANS&, POSTSCANS&)

Using WaveBook/512 with QuickBASIC Chapter 7

7-10 WaveBook User’s Manual

To create a channel scan of non sequential channels with independent gain and unipolar/bipolar
settings, the arrays of channel parameters must be created and passed to wbkSetScan.

ret% = QBwbkSetScan%(chans%(), gains%(), polarities%(), CHANNELS%)

This command sets the pre- and post-trigger sample frequencies.

 ret% = QBwbkSetFreq%(PREFREQ#, POSTFREQ#)

The following line sets up a simple analog trigger using channel 1 as the trigger source.

ret% = QBwbkSetTrigAnalog%(1, WgcX1%, 1, WctRisingEdge%, 2!, .1)

This command arms the system to acquire data. Since pre-trigger scans are to be collected, scans will
be immediately available for transfer into the PCs memory.

ret% = QBwbkArm%

When pre-trigger scans are included in the acquisition, scans begin to be acquired the moment the
system is armed. Scans will continue to be acquired until the trigger is satisfied and the post-trigger is
complete. Your application program must transfer the acquired data into a buffer in the PC as it is
collected. Until the trigger occurs, your application must be prepared to accept data continuously,
potentially far in excess of the sum of the specified pre-trigger and post-trigger scan counts. This is
best accomplished by setting up a background transfer in cycle mode which will automatically transfer
the scans as they are collected and wrap the buffer as it becomes full. The following line sets up a
background transfer of the acquired scans into buf. Cycle mode is turned on, allowing the buffer to
wrap around as it becomes full.

ret% = QBwbkBufferTransfer%(buf%(), BLOCK%, 1, 0, 0, active%, retCount&)

The following lines monitor the background operation, waiting for the acquisition to be complete.

PRINT "Waiting for trigger."
WHILE retCount& = 0
 ret% = QBwbkGetBackStat%(active%, retCount&)
WEND

Once the trigger has been detected, the transfer begins.

PRINT "Triggered. Transfer in progress."
WHILE active% <> 0
 ret% = QBwbkGetBackStat%(active%, retCount&)
WEND
PRINT "Acquisition complete:"; retCount&; "scans acquired."

The following line unpacks the data so that each sample occupies an integer. The same buffer is used.

ret% = QBwbkBufferUnpack%(buf%(), buf%(), BLOCK%, CHANNELS%, retCount&)

Since the buffer has potentially wrapped around, the earliest data is not at the beginning of the buffer.
The following line reorganizes the buffer so that the 1st pre-trigger scan occupies the 1st buffer
location and the last post-trigger scan occupies the last buffer location.

ret% = QBwbkBufferRotate%(buf%(), BLOCK%, CHANNELS%, retCount&)

Print pre-trigger acquired data.

PRINT "Pre-trigger data acquired:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data:";
 FOR j% = 0 TO PRESCANS& - 1
 PRINT TAB(j% * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%

Print post-trigger acquired data.

PRINT "Post-trigger data acquired:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data:";

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-11

 FOR j% = PRESCANS& TO BLOCK% - 1
 PRINT TAB((j% - PRESCANS&) * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%

Close the WaveBook and exit.

ret% = QBwbkClose%

Buffer Management
The following excerpts are from the example program ADCEX7.BAS found in the WaveBook
directory of your hard drive. This example demonstrates double buffering in the background mode, so
that data can be read into one buffer while another buffer can be processed in the foreground.

The program begins with an INCLUDE directive which defines useful constants and declarations that
are used throughout the program.

'$INCLUDE: 'wbk.bi'

Define constants.

CONST CHANNELS% = 8
CONST SCANS& = 20000
CONST BLOCK% = 1000
CONST FREQ# = 5000#

Arrays used by the program are set up.

DIM buf0%(CHANNELS% * BLOCK%)
DIM buf1%(CHANNELS% * BLOCK%)
DIM i%, j%
DIM active%
DIM retCount&
DIM tmpActive%
DIM tmpRetCount&
DIM ret%
DIM totals&(CHANNELS%)
DIM whichBuf%

Set up the error handler.

ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler

The following command initializes the WaveBook and puts it online. LPT1 specifies the port number
which the WaveBook is connected to and 7 is the interrupt level used.

ret% = QBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)

The following command defines the channels in a scan. The 1st and 2nd arguments define the start and
end channels of the scan. Unlike the command wbkSetScan, this command does not allow a separate
gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the scan in a
random order.

ret% = QBwbkSetMux%(1, CHANNELS%, WgcX1%, 1)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

ret% = QBwbkSetFreq%(1#, FREQ#)

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

ret% = QBwbkSetTrigHardware%(WtsSoftware%, 0!)

Using WaveBook/512 with QuickBASIC Chapter 7

7-12 WaveBook User’s Manual

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

ret% = QBwbkArm%

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

ret% = QBwbkSoftTrig%

Start the data transfer into the first buffer

ret% = QBwbkBufferTransfer%(buf0%(), BLOCK%, 0, 0, 0, tmpActive%, tmpRetCount&)
whichBuf% = 0

DO
 ' Swap the buffer selector, whichBuf selects the transfer buffer
 IF whichBuf% = 1 THEN whichBuf% = 0 ELSE whichBuf% = 1

Wait for the acquisition to go inactive or the buffer to be filled.

 DO
 ret% = QBwbkGetBackStat(active%, retCount&)
 LOOP WHILE ((active% <> 0) AND (retCount& < BLOCK%))

If the previous acquisition is still active, another transfer into the next buffer begins.

 IF (active% <> 0) THEN
 IF whichBuf% = 0 THEN
 ret% = QBwbkBufferTransfer(buf0%(), BLOCK%, 0, 0, 0, tmpActive%,
tmpRetCount&)
 ELSE
 ret% = QBwbkBufferTransfer(buf1%(), BLOCK%, 0, 0, 0, tmpActive%,
tmpRetCount&)
 END IF
 END IF

The following commands average the data in the process buffer.

 IF (retCount&> 0) THEN
 ' Average the readings in the process buffer and print the results
 FOR j% = 0 TO CHANNELS% - 1
 totals&(j%) = 0
 NEXT j%
 FOR i% = 0 TO retCount& - 1
 FOR j% = 0 TO CHANNELS% - 1
 IF whichBuf% = 0 THEN
 totals&(j%) = totals&(j%) + buf1%(i% * CHANNELS% + j%)
 ELSE
 totals&(j%) = totals&(j%) + buf0%(i% * CHANNELS% + j%)
 END IF
 NEXT j%
 NEXT i%

The results are printed.

 PRINT "Averages:";
 FOR j% = 0 TO CHANNELS% - 1
 PRINT TAB(j% * 7 + 17);
 PRINT USING "##.###"; (5# / 32768#) * totals&(j%) / retCount&;
 NEXT j%
 PRINT
 END IF
LOOP WHILE (active% <> 0)

The WaveBook is taken offline and reset.

ret% = QBwbkClose%

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-13

Sample Programs

ACDEX1.BAS
' This example demonstrates the use of the WaveBook's one-step
' acquisition functions and user error handling.
' Function used:
' QBwbkRd(chan, sample, gain, polarity)
' QBwbkRdN(chan, buf, count, trigger, level, freq, gain, polarity)
' QBwbkRdScan(startChan, endChan, buf, gain, polarity)
' QBwbkRdScanN(startChan, endChan, buf, count, trigger, level, freq, gain,
polarity)
' QBwbkSetErrHandler(errNum)
' QBwbkInit(lptPort, lptIntr)
' QBwbkClose()
'$INCLUDE: 'wbk.bi'
CONST FREQ# = 1000#
CONST GAIN% = WgcX1%
CONST BIPOLAR% = 1
CONST SCANS& = 9
CONST CHANNELS% = 8
DIM buf%(SCANS& * CHANNELS%)
DIM i%, j%
DIM sample%
DIM ret%
CLS
PRINT "ADCEX1.BAS"
' Set error handler and initialize WaveBook
ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)
' Get a single sample from a single channel
ret% = QBwbkRd%(1, sample%, GAIN%, BIPOLAR%)
' Print result
PRINT "Result of Rd: "; sample%
' Get multiple samples from a single channel, triggered by a software trigger
ret% = QBwbkRdN%(1, buf%(), SCANS&, WtsSoftware%, 0!, FREQ#, GAIN%, BIPOLAR%)
' Print results
PRINT "Results of RdN:"
PRINT "Channel 1 Data: ";
FOR i% = 0 TO SCANS& - 1
 PRINT TAB(i% * 7 + 17); buf%(i%);
NEXT i%
PRINT
' Get a single sample from multiple channels
ret% = QBwbkRdScan%(1, CHANNELS%, buf%(), GAIN%, BIPOLAR%)
' Print results
PRINT "Results of RdScan:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data: "; buf%(i%)
NEXT i%
' Get multiple samples from multiple channels, triggered by a software trigger
ret% = QBwbkRdScanN%(1, CHANNELS%, buf%(), SCANS&, WtsSoftware%, 0!, FREQ#, GAIN%,
BIPOLAR%)
' Print results
PRINT "Results of RdScanN:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data: ";
 FOR j% = 0 TO SCANS& - 1
 PRINT TAB(j% * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%
'Close and exit
ret% = QBwbkClose%
END
ErrorHandler:
PRINT "ERROR in ADCEX1.BAS"
PRINT "BASIC Error :" + STR$(ERR)
IF ERR = 100 THEN PRINT "WaveBook Error : " + HEX$(wbkErrno%)
'Close and exit
ret% = QBwbkClose%
END

Using WaveBook/512 with QuickBASIC Chapter 7

7-14 WaveBook User’s Manual

ADCEX2.BAS
' This example demonstrates the use of WaveBook's custom acquistion
' functions.
' Function used:
' QBwbkSetAcq(mode, preTrigCount, postTrigCount)
' QBwbkSetMux(startChan, endChan, gain, polarity)
' QBwbkSetFreq(preTrigFreq, postTrigFreq)
' QBwbkGetFreq(preTrigFreq, postTrigFreq)
' QBwbkGetPeriod(preTrigPeriod, postTrigPeriod)
' QBwbkSetTrigHardware(source, level)
' QBwbkArm()
' QBwbkSoftTrig()
' QBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,
retCount)
' QBwbkSetErrHandler(errNum)
' QBwbkInit(lptPort, lptIntr)
' QBwbkClose()
'$INCLUDE: 'wbk.bi'
CONST CHANNELS% = 8
CONST SCANS& = 10
CONST BLOCK% = 6
CONST FREQ# = 5#
DIM buf%(BLOCK% * CHANNELS%)
DIM i%, j%
DIM active%
DIM retCount&
DIM preTrigFreq#, postTrigFreq#
DIM preTrigPeriod#, postTrigPeriod#
DIM ret%
CLS
PRINT "ADCEX2.BAS"
PRINT
' Set error handler and initialize WaveBook
ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)
' Set the acquisition to NShot on trigger and the post-trigger scan count
ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)
' Set the scan configuration
ret% = QBwbkSetMux%(1, CHANNELS%, WgcX1%, 1)
' Set the post-trigger scan rates
ret% = QBwbkSetFreq%(1#, FREQ#)
' Get the pre-trigger and post-trigger scan rates in frequency and period
ret% = QBwbkGetFreq%(preTrigFreq#, postTrigFreq#)
PRINT "Result of GetFreq: pre-trigger="; preTrigFreq#; "Hz, post-trigger=";
postTrigFreq#; "Hz"
ret% = QBwbkGetPeriod%(preTrigPeriod#, postTrigPeriod#)
PRINT "Result of GetPeriod: pre-trigger="; preTrigPeriod#; "ns, post-trigger=";
postTrigPeriod#; "ns"
PRINT
' Set the trigger source to a software trigger command
ret% = QBwbkSetTrigHardware%(WtsSoftware%, 0!)
' Arm the acquisition
ret% = QBwbkArm%
' Issue a software trigger command to the hardware
ret% = QBwbkSoftTrig%
DO
 ' Read BLOCK scans from the hardware with cycle mode off,
 ' updateSingle on and foreground enabled
 ret% = QBwbkBufferTransfer%(buf%(), BLOCK%, 0, 1, 1, active%, retCount&)
 ' Print results
 PRINT "Result of BufferTransfer: retCount="; retCount&; " active="; active%
 FOR i% = 0 TO retCount& - 1
 PRINT "Scan"; i% + 1; "Data:";
 FOR j% = 0 TO CHANNELS% - 1
 PRINT TAB(j% * 7 + 17); buf%(i% * CHANNELS% + j%);
 NEXT j%
 PRINT
 NEXT i%
 PRINT
LOOP WHILE active% 0
'Close and exit
ret% = QBwbkClose%

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-15

END
ErrorHandler:
PRINT "ERROR in ADCEX2.BAS"
PRINT "BASIC Error :" + STR$(ERR)
IF ERR = 100 THEN PRINT "WaveBook Error : " + HEX$(wbkErrno%)
'Close and exit
ret% = QBwbkClose%
END

ADCEX3.BAS
' This example takes multiple scans from hardware using a software trigger.
' Each scan includes the high speed digital I/O port (channel 0) and
' two analog channels: 5 and 8.
' Function used:
' QBwbkSetAcq(mode, preTrigCount, postTrigCount)
' QBwbkSetScan(chans, gains, polarities, count)
' QBwbkSetFreq(preTrigFreq, postTrigFreq)
' QBwbkSetTrigHardware(source, level)
' QBwbkArm()
' QBwbkSoftTrig()
' QBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,
retCount)
' QBwbkGetDriverVersion(version)
' QBwbkSetErrHandler(errNum)
' QBwbkInit(lptPort, lptIntr)
' QBwbkClose()
'$INCLUDE: 'wbk.bi'
CONST FREQ# = 5
CONST SCANS& = 10
CONST CHANNELS% = 3
DIM buf%(SCANS& * CHANNELS%)
DIM i%, j%
DIM active%
DIM retCount&
DIM version%
DIM chans%(CHANNELS%)
DIM gains%(CHANNELS%), polarities%(CHANNELS%)
DIM ret%
CLS
PRINT "ADCEX3.BAS"
PRINT
' Scan sequence definition
chans%(0) = 0 ' high speed digital channel
chans%(1) = 5 ' analog channel 5
chans%(2) = 8 ' analog channel 8
' Channel gains and polarities setting
FOR i% = 0 TO CHANNELS% - 1
 gains%(i%) = WgcX1% ' unity gain
 polarities%(i%) = 1 ' bipolar
NEXT i%
' Get driver version
ret% = QBwbkGetDriverVersion%(version%)
PRINT USING "Using driver version: #.##"; .01 * version%
PRINT
' Set error handler and initialize WaveBook
ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)
' Set the acquisition to NShot on trigger and the post-trigger scan count
ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)
' Set scan configuration
ret% = QBwbkSetScan%(chans%(), gains%(), polarities%(), CHANNELS%)
' Set the post-trigger scan rates
ret% = QBwbkSetFreq%(1#, FREQ#)
' Set the trigger source to a software trigger command
ret% = QBwbkSetTrigHardware%(WtsSoftware%, 0!)
' Arm the acquisition
ret% = QBwbkArm%
' Issue a software trigger command to the hardware
ret% = QBwbkSoftTrig%
' Read SCANS& number of scans from the hardware
' with cycle mode off, updateSingle on and foreground enabled
ret% = QBwbkBufferTransfer%(buf%(), SCANS&, 0, 1, 1, active%, retCount&)
' Print results

Using WaveBook/512 with QuickBASIC Chapter 7

7-16 WaveBook User’s Manual

PRINT "Results of BufferTransfer:"
PRINT " Digital_ch_0 Analog_ch_5 Analog_ch_8"
FOR i% = 0 TO retCount& - 1
 ' shift the upper (valid) 8 bits of the digital input to the lower 8 bits
 buf%(i% * CHANNELS%) = ((buf%(i% * CHANNELS%) AND &HFF00) \ 256) AND &HFF
 PRINT "Scan"; i% + 1; "Data:";
 FOR j% = 0 TO CHANNELS% - 1
 PRINT TAB(j% * 14 + 17); buf%(i% * CHANNELS% + j%);
 NEXT j%
 PRINT
NEXT i%
'Close and exit
ret% = QBwbkClose%
END
ErrorHandler:
PRINT "ERROR in ADCEX3.BAS"
PRINT "BASIC Error :" + STR$(ERR)
IF ERR = 100 THEN PRINT "WaveBook Error : " + HEX$(wbkErrno%)
'Close and exit
ret% = QBwbkClose%
END

ADCEX4.BAS
' This example reads scans of multiple channels in the background mode
' and uses a software trigger to start the acquisition.
' Function used:
' QBwbkSetAcq(mode, preTrigCount, postTrigCount)
' QBwbkSetFreq(preTrigFreq, postTrigFreq)
' QBwbkSetMux(startChan, endChan, gain, polarity)
' QBwbkSetTrigHardware(source, level)
' QBwbkArm()
' QBwbkSoftTrig()
' QBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,
retCount)
' QBwbkGetBackStat(active, retCount)
' QBwbkSetErrHandler(errNum)
' QBwbkInit(lptPort, lptIntr)
' QBwbkClose()
'$INCLUDE: 'wbk.bi'
CONST CHANNELS% = 8
CONST SCANS& = 9
CONST FREQ# = 2
DIM buf%(SCANS& * CHANNELS%)
DIM i%, j%
DIM active%
DIM retCount&
DIM ret%
CLS
PRINT "ADCEX4.BAS"
PRINT
' Set error handler and initialize WaveBook
ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)
' Set the acquisition to NShot on trigger and the post-trigger scan count
ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)
' Set scan's configuration
ret% = QBwbkSetMux%(1, CHANNELS%, WgcX1%, 1)
' Set the post-trigger scan rates
ret% = QBwbkSetFreq%(1#, FREQ#)
' Set the trigger source to a software trigger command
ret% = QBwbkSetTrigHardware%(WtsSoftware%, 0!)
' Arm the acquisition
ret% = QBwbkArm%
' Start reading data in the background mode with cycle mode off
' and updateSingle on
ret% = QBwbkBufferTransfer%(buf%(), SCANS&, 0, 1, 0, active%, retCount&)
' Issue a software trigger command to the hardware
ret% = QBwbkSoftTrig%
' Monitor the progress of the background transfer
PRINT "Waiting for trigger."
WHILE retCount& = 0
 ret% = QBwbkGetBackStat%(active%, retCount&)

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-17

WEND
PRINT "Triggered. Transfer in progress."
WHILE active% 0
 ret% = QBwbkGetBackStat%(active%, retCount&)
WEND
PRINT "Acquisition complete:"; retCount&; "scans acquired."
PRINT
' Print results
PRINT "Data acquired:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data:";
 FOR j% = 0 TO SCANS& - 1
 PRINT TAB(j% * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%
' Close and Exit
ret% = QBwbkClose%
END
ErrorHandler:
PRINT "ERROR in ADCEX4.BAS"
PRINT "BASIC Error :" + STR$(ERR)
IF ERR = 100 THEN PRINT "WaveBook Error : " + HEX$(wbkErrno%)
'Close and exit
ret% = QBwbkClose%
END

ADCEX5.BAS
' This example takes multiple scans from hardware using a complex analog
' trigger. The acquisition will start on a rising-edge of channel 1 at
' 2 volts OR a falling edge on channel 2 at 3 volts.
' Function used:
' QBwbkSetAcq(mode, preTrigCount, postTrigCount)
' QBwbkSetMux(startChan, endChan, gain, polarity)
' QBwbkSetFreq(preTrigFreq, postTrigFreq)
' QBwbkSetTrigComplex(chans, gains, polarities, rising, levels, hysteresis,
count, opstr)
' QBwbkArm()
' QBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,
retCount)
' QBwbkSetErrHandler(errNum)
' QBwbkInit(lptPort, lptIntr)
' QBwbkClose()
'$INCLUDE: 'wbk.bi'
CONST FREQ# = 1000
CONST SCANS& = 9
CONST CHANNELS% = 3
CONST NUMTRIG% = 2
DIM buf%(SCANS& * CHANNELS%)
DIM i%, j%
DIM active%
DIM retCount&
DIM chans%(NUMTRIG%)
DIM gains%(NUMTRIG%), polarity%(NUMTRIG%)
DIM rising%(NUMTRIG%)
DIM levels!(NUMTRIG%), hysteresis!(NUMTRIG%)
DIM opstr$
DIM ret%
' Initialize the complex trigger arrays for a rising-edge on channel 1
' at 2 volts OR a falling-edge on channel 2 at 3 volts
chans%(0) = 1
gains%(0) = WgcX1%
polarity%(0) = 1
rising%(0) = WctRisingEdge%
levels!(0) = 2
hysteresis!(0) = .1
chans%(1) = 2
gains%(1) = WgcX1%
polarity%(1) = 1
rising%(1) = WctFallingEdge%
levels!(1) = 3
hysteresis!(1) = .1
opstr$ = "+"

Using WaveBook/512 with QuickBASIC Chapter 7

7-18 WaveBook User’s Manual

CLS
PRINT "ADCEX5.BAS"
PRINT

' Set error handler and initialize WaveBook
ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)
' Set the acquisition to NShot on trigger and the post-trigger scan count
ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)
' Set the scan configuration
ret% = QBwbkSetMux%(1, CHANNELS%, WgcX1%, 1)
' Set the post-trigger scan rates
ret% = QBwbkSetFreq%(1#, FREQ#)
' Set a complex trigger at channels 1 and 2
PRINT "Waiting for complex trigger of channels 1 or 2..."
PRINT
ret% = QBwbkSetTrigComplex%(chans%(), gains%(), polarity%(), rising%(), levels!(),
hysteresis!(), NUMTRIG%, opstr$)
' Arm the acquisition
ret% = QBwbkArm%
' Read SCANS& number of scans from the hardware
' with cycle mode off, updateSingle on and foreground enabled
ret% = QBwbkBufferTransfer%(buf%(), SCANS&, 0, 1, 1, active%, retCount&)
' Print results
PRINT "Results of BufferTransfer:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data:";
 FOR j% = 0 TO SCANS& - 1
 PRINT TAB(j% * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%
'Close and exit
ret% = QBwbkClose%
END
ErrorHandler:
PRINT "ERROR in ADCEX5.BAS"
PRINT "BASIC Error :" + STR$(ERR)
IF ERR = 100 THEN PRINT "WaveBook Error : " + HEX$(wbkErrno%)
'Close and exit
ret% = QBwbkClose%
END

ADCEX6.BAS
' This example demonstrates an acquisition made up of pre-trigger and
' post-trigger scans from multiple channels using a DSP-based analog
' trigger. It also uses data packing and rotating.
' Function used:
' QBwbkSetAcq(mode, preTrigCount, postTrigCount)
' QBwbkSetFreq(preTrigFreq, postTrigFreq)
' QBwbkSetScan(chans, gains, polarities, chanCount)
' QBwbkSetTrigAnalog(chan, gain, polarity, rising, level, opstr)
' QBwbkArm()
' QBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,
retCount)
' QBwbkBufferUnpack(packedBuf, unpackedBuf, scanCount, chanCount, retCount)
' QBwbkBufferRotate(buf, scanCount, chanCount, retCount)
' QBwbkGetBackStat(active, retCount)
' QBwbkSetErrHandler(errNum)
' QBwbkInit(lptPort, lptIntr)
' QBwbkClose()
'$INCLUDE: 'wbk.bi'
CONST CHANNELS% = 4
CONST PRESCANS& = 5
CONST POSTSCANS& = 9
CONST PREFREQ# = 100#
CONST POSTFREQ# = 200#
CONST BLOCK% = (PRESCANS& + POSTSCANS&)
DIM buf%(BLOCK% * CHANNELS%)
DIM i%, j%
DIM active%
DIM retCount&
DIM chans%(CHANNELS%)

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-19

DIM gains%(CHANNELS%), polarities%(CHANNELS%)
DIM ret%
CLS
PRINT "ADCEX6.BAS"
PRINT

' Scan definition
chans%(0) = 1 ' channel numbers
chans%(1) = 3
chans%(2) = 5
chans%(3) = 7
FOR i% = 0 TO CHANNELS% - 1
 gains%(i%) = WgcX1% ' unity gain
 polarities%(i%) = 1 ' bipolar
NEXT i%
' Set error handler and initialize WaveBook
ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)
' Enable data packing
ret% = QBwbkSetDataPacking%(1)
' Set the acquisition for pre/post-trigger mode and the scan counts
ret% = QBwbkSetAcq%(WamPrePost%, PRESCANS&, POSTSCANS&)
' Set the scan configuration
ret% = QBwbkSetScan%(chans%(), gains%(), polarities%(), CHANNELS%)
' Set the pre-trigger and post-trigger scan rates
ret% = QBwbkSetFreq%(PREFREQ#, POSTFREQ#)
' Set the trigger source to an analog trigger on channel 1 at 2 volts
ret% = QBwbkSetTrigAnalog%(1, WgcX1%, 1, WctRisingEdge%, 2!, .1)
' Arm the acquisition
ret% = QBwbkArm%
' Start reading data in the background mode with cycle mode on
' and updateSingle off
ret% = QBwbkBufferTransfer%(buf%(), BLOCK%, 1, 0, 0, active%, retCount&)
' Monitor the progress of the background transfer
PRINT "Waiting for trigger."
WHILE retCount& = 0
 ret% = QBwbkGetBackStat%(active%, retCount&)
WEND
PRINT "Triggered. Transfer in progress."
WHILE active% 0
 ret% = QBwbkGetBackStat%(active%, retCount&)
WEND
PRINT "Acquisition complete:"; retCount&; "scans acquired."
PRINT
' Unpack the packed data using the same buffer
ret% = QBwbkBufferUnpack%(buf%(), buf%(), BLOCK%, CHANNELS%, retCount&)
' Rotate the unpacked data so that the earliest data starts at the
' beginning of the buffer and the latest is at the end
ret% = QBwbkBufferRotate%(buf%(), BLOCK%, CHANNELS%, retCount&)
' Print results
PRINT "Pre-trigger data acquired:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data:";
 FOR j% = 0 TO PRESCANS& - 1
 PRINT TAB(j% * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%
PRINT
PRINT "Post-trigger data acquired:"
FOR i% = 0 TO CHANNELS% - 1
 PRINT "Channel"; i% + 1; "Data:";
 FOR j% = PRESCANS& TO BLOCK% - 1
 PRINT TAB((j% - PRESCANS&) * 7 + 17); buf%(j% * CHANNELS% + i%);
 NEXT j%
 PRINT
NEXT i%
' Close and Exit
ret% = QBwbkClose%
END
ErrorHandler:
PRINT "ERROR in ADCEX6.BAS"
PRINT "BASIC Error :" + STR$(ERR)
IF ERR = 100 THEN PRINT "WaveBook Error : " + HEX$(wbkErrno%)

Using WaveBook/512 with QuickBASIC Chapter 7

7-20 WaveBook User’s Manual

'Close and exit
ret% = QBwbkClose%
END

Chapter 7 Using WaveBook/512 with QuickBASIC

WaveBook User’s Manual 7-21

ADCEX7.BAS
' This example demonstrates using double buffering in the background
' mode, so that data can be read into one buffer while the another buffer
' can be processed in the foreground.
' Functions used:
' QBwbkSetAcq(mode, preTrigCount, postTrigCount)
' QBwbkSetMux(startChan, endChan, gain, polarity)
' QBwbkSetFreq(preTrigFreq, postTrigFreq)
' QBwbkSetTrigHardware(source, level)
' QBwbkArm()
' QBwbkSoftTrig()
' QBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,
retCount)
' QBwbkGetBackStat(active, retCount)
' QBwbkSetErrHandler(errNum)
' QBwbkInit(lptPort, lptIntr)
' QBwbkClose()
'$INCLUDE: 'wbk.bi'
CONST CHANNELS% = 8
CONST SCANS& = 20000
CONST BLOCK% = 1000
CONST FREQ# = 5000#
DIM buf0%(CHANNELS% * BLOCK%)
DIM buf1%(CHANNELS% * BLOCK%)
DIM i%, j%
DIM active%
DIM retCount&
DIM tmpActive%
DIM tmpRetCount&
DIM ret%
DIM totals&(CHANNELS%)
DIM whichBuf%
CLS
PRINT "ADCEX7.BAS"
PRINT
' Set error handler and initialize WaveBook
ret% = QBwbkSetErrHandler%(100)
ON ERROR GOTO ErrorHandler
ret% = QBwbkInit%(LPT1%, IRQ7%)

' Set the acquisition to NShot on trigger and the post-trigger scan count
ret% = QBwbkSetAcq%(WamNShot%, 0, SCANS&)

' Set the scan configuration
ret% = QBwbkSetMux%(1, CHANNELS%, WgcX1%, 1)

' Set the post-trigger scan rates
ret% = QBwbkSetFreq%(1#, FREQ#)

' Set the trigger source to a software trigger command
ret% = QBwbkSetTrigHardware%(WtsSoftware%, 0!)

' Arm the acquisition
ret% = QBwbkArm%

' Issue a software trigger command to the hardware
ret% = QBwbkSoftTrig%

' Start reading data into the first buffer
ret% = QBwbkBufferTransfer%(buf0%(), BLOCK%, 0, 0, 0, tmpActive%, tmpRetCount&)
whichBuf% = 0

DO
 ' Swap the buffer selector, whichBuf selects the transfer buffer
 IF whichBuf% = 1 THEN whichBuf% = 0 ELSE whichBuf% = 1

 ' Wait for the acquisition to go inactive or the buffer to be filled
 DO
 ret% = QBwbkGetBackStat(active%, retCount&)
 LOOP WHILE ((active% 0) AND (retCount& BLOCK%))

 ' If the previous acquisition is still active, start another transfer
 ' into the next buffer

Using WaveBook/512 with QuickBASIC Chapter 7

7-22 WaveBook User’s Manual

 IF (active% 0) THEN
 IF whichBuf% = 0 THEN
 ret% = QBwbkBufferTransfer(buf0%(), BLOCK%, 0, 0, 0, tmpActive%,
tmpRetCount&)
 ELSE
 ret% = QBwbkBufferTransfer(buf1%(), BLOCK%, 0, 0, 0, tmpActive%,
tmpRetCount&)
 END IF
 END IF

 ' Process the data into the process buffer
 IF (retCount& 0) THEN
 ' Average the readings in the process buffer and print the results
 FOR j% = 0 TO CHANNELS% - 1
 totals&(j%) = 0
 NEXT j%
 FOR i% = 0 TO retCount& - 1
 FOR j% = 0 TO CHANNELS% - 1
 IF whichBuf% = 0 THEN
 totals&(j%) = totals&(j%) + buf1%(i% * CHANNELS% + j%)
 ELSE
 totals&(j%) = totals&(j%) + buf0%(i% * CHANNELS% + j%)
 END IF
 NEXT j%
 NEXT i%
 PRINT "Averages:";
 FOR j% = 0 TO CHANNELS% - 1
 PRINT TAB(j% * 7 + 17);
 PRINT USING "##.###"; (5# / 32768#) * totals&(j%) / retCount&;
 NEXT j%
 PRINT
 END IF
LOOP WHILE (active% 0)

'Close and exit
ret% = QBwbkClose%

END

ErrorHandler:

PRINT "ERROR in ADCEX7.BAS"
PRINT "BASIC Error :" + STR$(ERR)
IF ERR = 100 THEN PRINT "WaveBook Error : " + HEX$(wbkErrno%)

'Close and exit
ret% = QBwbkClose%

END

Using WaveBook/512 with Turbo Pascal 8

WaveBook User’s Manual 8-1

This chapter describes the use of the Turbo Pascal (version 7) language with the standard API to
develop a basic data acquisition program. For additional functions of the standard API, refer to chapter
10. Note: The WaveBook system includes full-featured DOS and Windows software drivers for C
(chapter 6), QuickBASIC (chapter 7), Turbo Pascal, and Visual Basic (chapter 9). The enhanced API
(for C, Visual Basic and Delphi) is described in chapters 11 and 12.

To use the example programs located in the WBK\DOS\TP7 directories, make sure that your program
specifies WBK.TPU unit in the uses clause. Also be sure that the WBK.TPU unit file is in the Turbo
Pascal search path. The temperature examples will use TBKTC.TPU in addition to WBK.TPU.

Simple Analog Input
The following excerpts are from the example program ADCEX1.PAS found in the WaveBook
directory of your hard drive. This program shows several examples of the highest level WaveBook
driver functions. These functions are the easiest to use at the cost of flexibility. For additional
flexibility, lower level functions, discussed later, should be used.

Define constants used by the program.

const
 CHANS = 8;
 SCANS = 10;
 FREQ = 1000.0;
 GAIN = WgcX1;
 BIPOLAR = 1;

Buffers and variables used by program are declared.

var
 buf:array[0..CHANS * SCANS - 1] of integer;
 sample:integer;
 i, j:word;

Create custom error handler routine.

procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;

The following line sets the error handler to use the custom error handling routine.

 wbkSetErrHandler(myhandler);

The WaveBook is initilized and put on-line. LPT1 and interrupt level 7 are used.

 wbkInit(LPT1, 7);

The following command will get one sample from channel 1 at a gain of X1 with its unipolar/bipolar
setting set to bipolar. The value will be returned in the variable "sample".

 wbkRd(1, @sample, GAIN, BIPOLAR);

The result of the acquisition is printed.

 writeln('Result of Rd:', sample:6);

The following command will get 8 samples from a single channel. Channel 1 at a gain of X1 in bipolar
mode is selected. This command requires a trigger to be satisfied before the data is collected. A
trigger source of software will start the acquisition immediately. The frequency of data collection is set
to 1 kHz. The data will be returned in the integer array "buf".

Using WaveBook/512 with Turbo Pascal Chapter 8

8-2 WaveBook User’s Manual

 wbkRdN(1, @buf, SCANS, WtsSoftware, 0.0, FREQ, GAIN, BIPOLAR);

The result of the acquisition is printed.

 (* Print results *)
 write('Results of RdN: ');
 for i := 0 to CHANS - 1 do write(' ', buf[i]:6);

The following command collects an entire scan of data comprised of multiple channels. The following
function arguments define a scan starting with channel 1 and ending with channel 8. This command
sets all the channels to the same gain and unipolar/bipolar setting. The data is returned in the array buf.

 wbkRdScan(1, CHANS, @buf, GAIN, BIPOLAR);

Print the results.

 writeln('Results of RdScan:');
 for i := 0 to CHANS - 1 do
 writeln('Channel ', (i + 1):2, ' Data: ', buf[i]:6);

The following command collects multiple scans consisting of multiple channels. Like wbkRdScan, this
command sets all the channels to the same gain and unipolar/bipolar setting. Since multiple scans are
being collected, a trigger source and timebase is required. The arguments shown set the trigger source
to Software causing an immediate trigger. The sample frequency of 1Khz.

 wbkRdScanN(1, CHANS, @buf, SCANS, WtsSoftware, 0.0, FREQ, GAIN, BIPOLAR);

Print the results.

 writeln;
 writeln('Results of RdScanN:');
 for i := 0 to CHANS - 1 do begin
 write('Channel ', (i + 1):2, ' Data: ');
 for j := 0 to SCANS - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;

The WaveBook is taken off-line and reset.

 wbkClose;

Low-Level Analog Input
The following excerpts are from the example program ADCEX2.PAS found in the WaveBook
directory of your hard drive. This program shows several examples of the lowest level WaveBook
driver functions. These functions are more complex than the high-level functions but allow the greatest
flexibility.

Constants are defined. CHANS is the number of channels in the scan, SCANS is the number of scans
in the acquisition, BLOCK is the number of scans read at one time, and FREQ is the post-trigger scan
rate in Hz.

Define constants used by the program.

const
 CHANS = 8;
 SCANS = 10;
 BLOCK = 6;
 FREQ = 5.0;

Buffers and variables used by program are declared.

var
 buf:array[0..CHANS * BLOCK - 1] of integer;
 i, j:word;
 active:byte;
 retCount:longint;
 pre_trig_freq, post_trig_freq:double;
 pre_trig_period, post_trig_period:double;

Create custom error handler routine.

begin

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-3

 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;

The following line sets the error handler to use the custom error handling routine.

 wbkSetErrHandler(myhandler);

Initialize WaveBook and put on-line. LPT1 and IRQ7 are used.

 wbkInit(LPT1, 7);

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

 wbkSetAcq(WamNShot, 0, SCANS);

The following command defines the channels in a scan. The 1st and 2nd arguments define the start and
end channels of the scan. Unlike the command wbkSetScan, this command does not allow a separate
gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the scan in a
random order.

 wbkSetMux(1, CHANS, WgcX1, 1);

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

 wbkSetFreq(1.0, FREQ);

The following line shows the usage of the wbkGetFreq command which returns the present settings for
the pre- and post-trigger frequencies.

 wbkGetFreq(@pre_trig_freq, @post_trig_freq);
 writeln('Result wbkGetFreq: pre-trigger=', pre_trig_freq:0:2,
 'Hz, post-trigger=', post_trig_freq:0:2, 'Hz');
 wbkGetPeriod(@pre_trig_period, @post_trig_period);
 writeln('Result wbkGetPeriod: pre-trigger=', pre_trig_period:0:0,
 'ns, post-trigger=', post_trig_period:0:0, 'ns');

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

 wbkSetTrigHardware(WtsSoftware, 0.0);

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

 wbkArm;

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

 wbkSoftTrig;

The following lines perform a foreground transfer from the WaveBook of size BLOCK. The data is
then printed on the screen. The transfers will continue until the acquisition is no longer active.

 repeat
 (* Read BLOCK scans from the hardware with cycle mode off, *)
 (* updateSingle on and foreground enabled *)
 wbkBufferTransfer(@buf, BLOCK, 0, 1, 1, @active, @retCount);

Using WaveBook/512 with Turbo Pascal Chapter 8

8-4 WaveBook User’s Manual

 (* Print results *)
 writeln;
 writeln('Result wbkBufferTransfer: retCount=', retCount, ', active=',
active);
 for i := 0 to retCount - 1 do begin
 write('Scan ', (i + 1):5, ':');
 for j := 0 to CHANS - 1 do write(' ', buf[i * CHANS + j]:6);
 writeln;
 end;
 until (active = 0);

The WaveBook is taken off-line and reset.

 wbkClose;

Accessing the High-Speed Digital Input Port
The following excerpts are from the example program ADCEX3.PAS found in the WaveBook
directory of your hard drive. This program shows how to collect analog and high-speed digital signals
concurrently, in the same scan.

Constants are defined.

const
 FREQ = 5;
 SCANS = 10;
 CHANS = 3;

Buffers and variables used by program are declared.

var
 buf:array[0..CHANS * SCANS - 1] of integer;
 i, j:word;
 version:word;
 chs:array[0..CHANS - 1] of word;
 gains:array[0..CHANS - 1] of byte;
 polarities:array[0..CHANS - 1] of byte;
 active:byte;
 retCount:longint;

Create custom error handler routine.

procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;

To create a channel scan of non sequential channels with independent gain and unipolar/bipolar
settings, the arrays of channel parameters must be created and passed to wbkSetScan. Channel 0 is the
high speed digital port. When added to the channel scan, the high speed digital port is scanned
synchronously with the analog signals.

 chs[0]:=0; (* high speed digital channel *)
 chs[1]:=5; (* analog channel 5 *)
 chs[2]:=8; (* analog channel 8 *)

The following lines set all of the gains and unipolar/bipolar settings to the same setting. Your program
can assign each channel to a different value.

 for i:=0 to 2 do begin
 gains[i]:=WgcX1; (* unity gain *)
 polarities[i]:=1; (* bipolar *)
 end;

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-5

The following line gets the driver version and prints the information.

 wbkGetDriverVersion(@version);
 writeln('Using driver version ', 0.01 * version);

The next line sets the error handler to use the custom error handling routine.

 wbkSetErrHandler(myhandler);

Initialize the WaveBook and put it on line. LPT port 1 and interrupt level 7 are used.

 wbkInit(LPT1, 7);

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post- trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

 wbkSetAcq(WamNShot, 0, SCANS);

Setup the scan by passing the channel configuration arrays to the wbkSetScan command.

 wbkSetScan(@chs, @gains, @polarities, CHANS);

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

 wbkSetFreq(1.0, FREQ);

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

 wbkSetTrigHardware(WtsSoftware, 0.0);

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

 wbkArm;

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

 wbkSoftTrig;

The next line performs a foreground data transfer from the WaveBook's internal buffer to the PC's
memory. The foreground transfer will continue until its buffer is full or the acquisition is complete.
The results are printed.

 wbkBufferTransfer(@buf, SCANS, 0, 1, 1, @active, @retCount);

 (* Print results *)
 writeln('Results of BufferTransfer:');
 writeln('Scan Digital_ch_0 Analog_ch_5 Analog_ch_8');
 for i := 0 to retCount - 1 do begin
 (* get the upper (valid) 8 bits of the digital input *)
 buf[CHANS * i] := buf[CHANS * i] shr 8;
 write(' ', (i + 1):2, ' ');
 for j := 0 to 2 do write(' ', buf[CHANS * i + j]:6, ' ');
 writeln;
 end;

 The WaveBook is taken off-line and reset.

 wbkClose;

Using WaveBook/512 with Turbo Pascal Chapter 8

8-6 WaveBook User’s Manual

Background Processing of Analog Input
The following excerpts are from the example program ADCEX4.PAS found in the WaveBook
directory of your hard drive. This program shows how to collect analog samples and transfer them into
the PC's memory in the background. Once the background acquisition is configured and armed, your
program can perform other operations concurrently with the background data collection. The
foreground program can use the wbkGetBackStat command to periodically check on the status of the
acquisition.

For performing acquisition that are greater in size than the allocated buffer, the background operation
can be set to Cycle mode which will wrap around in the allocated buffer as it becomes full. In this
mode, your program must monitor the background and transfer the data out of the allocated buffer
before the background operation overwrites it.

Define program constants.
 CHANS = 8;
 SCANS = 9;
 FREQ = 2.0;

Buffers and variables used by program are declared.
var
 buf:array[0..CHANS * SCANS - 1] of integer;
 i, j:word;
 active:byte;
 retCount: longint;

Create custom error handler routine.
procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;

The next line sets the error handler to use the custom error handling routine.

 wbkSetErrHandler(myhandler);

Initialize the WaveBook and put it on line. LPT port 1 and interrupt level 7 are used.

 wbkInit(LPT1, 7);

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post- trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

 wbkSetAcq(WamNShot, 0, SCANS);

Set the scan configuration.

 wbkSetMux(1, CHANS, WgcX1, 1);

This command sets the post-trigger scan rates. Since this application does not collect pre-trigger scans,
the 1st argument is ignored.

 wbkSetFreq(1.0, FREQ);

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

 wbkSetTrigHardware(WtsSoftware, 0.0);

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

 wbkArm;

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-7

The following line sets up a background transfer. Regardless of the state of the acquisition, the
program will immediately return from this function call and proceed to the next line. As the data is
collected by the WaveBook, it is automatically transferred to the buffer À �ÀbufÀ �À

 wbkBufferTransfer(@buf, SCANS, 0, 1, 0, @active, @retCount);

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

 wbkSoftTrig;

Although your program can begin processing other tasks at this point, our example program simply
monitors the background until the user hits a key or the acquisition is complete.

 repeat
 wbkGetBackStat(@active, @retCount);
 write('Transfer in progress: ', retCount, ' scans acquired.', chr(13));
 until active = 0;

Once the acquisition has completed, a message is printed.

 writeln('Acquisition complete.');

The following lines print the collected data.

 writeln('Data acquired:');
 for i := 0 to CHANS - 1 do begin
 write('Channel ', (i + 1):2, ' Data:');
 for j := 0 to retCount - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;

The WaveBook is taken off-line and reset.

 wbkClose;

Complex Triggering
The following excerpts are from the example program ADCEX5.PAS found in the WaveBook
directory of your hard drive. This program shows how to setup a complex trigger where more than one
channel can be combined in a logical trigger equation. The acquisition will start on a rising edge of
channel 1 at 2 volts OR a falling edge on channel 2 at 3 volts.

Define program constants.

const
 FREQ = 1000;
 SCANS = 9;
 CHANS = 3;
 NUM_TRIG= 2;

Buffers and variables used by program are declared.

var

 buf:array[0..CHANS * SCANS - 1] of integer;
 i, j: integer;
 retCount:longint;
 active:byte;
 chans_tr:array[0..NUM_TRIG - 1] of word;
 gains_tr:array[0..NUM_TRIG - 1] of byte;
 polarity_tr:array[0..NUM_TRIG - 1] of byte;
 rising:array[0..NUM_TRIG - 1] of byte;
 levels:array[0..NUM_TRIG - 1] of single;
 hysteresis:array[0..NUM_TRIG - 1] of single;
 opstr:string;

Using WaveBook/512 with Turbo Pascal Chapter 8

8-8 WaveBook User’s Manual

Create custom error handler routine.

procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;

The following lines are definitions and initialization for the variables used for setting up the trigger
equation. The variable chans_tr is an array of channels used in the trigger equation. Channels 1 and 2
are specified. The variable gain_tr is an array that holds the gains for channels 1 and 2. In this case
they are both set to X1. Channels 1 and 2 can also be a part of the scan group with the same or
different gain assignments. The variable polarity_tr is an array that holds the unipolar/bipolar settings
for channels 1 and 2. The variable rising is an array that holds the edge settings for channels 1 and 2.
In this case, channel 1 triggers on the rising edge, while channel 2 triggers on the falling edge. The
variables levels and hysteresis are arrays that hold the voltage thresholds and hysteresis settings for
channels 1 and 2, respectively. The variable opstr holds the boolean operator for the trigger equation.
The + sign indicates an OR operator between channels 1 and 2.

 chans_tr[0] := 1;
 gains_tr[0] := WgcX1;
 polarity_tr[0] := 1;
 rising[0] := WcrRisingEdge;
 levels[0] := 2.0;
 hysteresis[0] := 0.1;

 chans_tr[1] := 2;
 gains_tr[1] := WgcX1;
 polarity_tr[1] := 1;
 rising[1] := WcrFallingEdge;
 levels[1] := 3.0;
 hysteresis[1] := 0.1;

 opstr := '+';

The previous definitions create the following trigger setup:

System Trigger = (CH1 @ X1, bipolar, rising edge through 2.0V with 0.1V hyst) OR (CH2 @ X1,
bipolar, falling edge through 3.0V with 0.1V hyst)

The next line sets the error handler to use the custom error handling routine.

 wbkSetErrHandler(myhandler);

Initialize the WaveBook and put it on line. LPT port 1 and interrupt level 7 are used.

 wbkInit(LPT1, 7);

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post- trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

 wbkSetAcq(WamNShot, 0, SCANS);

Set the scan configuration.

 wbkSetMux(1, CHANS, WgcX1, 1);

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

 wbkSetFreq(1.0, FREQ);

The following lines notify the user of the system's status then setup the complex trigger.

 writeln('Waiting for complex trigger at channels 1 and 2...');
 wbkSetTrigComplex(@chans_tr, @gains_tr, @polarity_tr, @rising, @levels,
 @hysteresis, NUM_TRIG, opstr);

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-9

This command arms the system to acquire data. Since no pre-trigger scans were configured, no data
will be available until the trigger is satisfied.

 wbkArm;

The next line performs a foreground data transfer from the WaveBook's internal buffer to the PC's
memory. The foreground transfer will continue until its buffer is full or the acquisition is complete. If
the trigger is not satisfied within the programmed timeout, the driver will return control to the program.
If you do not want your program to "hang" until the trigger is satisfied, it is recommended that a
background transfer be used. Once your program initiates a background transfer, control is passed
back to your program to perform other tasks while waiting for a trigger or collecting data.

 wbkBufferTransfer(@buf, SCANS, 0, 1, 1, @active, @retCount);

Print the transferred data.

 writeln('Results of BufferTransfer:');
 for i := 0 to CHANS - 1 do begin
 write('Channel ', (i + 1):2, ' Data: ');
 for j := 0 to retCount - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;

The WaveBook is taken off-line and reset.

 wbkClose;

Pre- and Post-Trigger Acquisitions
The following excerpts are from the example program ADCEX6.PAS found in the WaveBook
directory of your hard drive. This program shows how to setup and process acquisitions with both pre-
and post-trigger scans.

Define program constants.

const
 CHANS = 4;
 PRE_SCANS = 5;
 POST_SCANS = 9;
 PRE_FREQ = 100.0;
 POST_FREQ = 200.0;
 BLOCK = PRE_SCANS+POST_SCANS;

Buffers and variables used by program are declared.

var

 buf:array[0..CHANS * BLOCK - 1] of integer;
 i, j:word;
 chs:array[0..CHANS-1] of word;
 gains:array[0..CHANS-1] of byte;
 polarities:array[0..CHANS-1] of byte;
 active:byte;
 retCount:longint;
 pre_trig_freq, post_trig_freq:double;
 pre_trig_period, post_trig_period:double;

Create custom error handler routine.

procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;

Define the sequence of the channels for the acquisition.

 chs[0] := 1;

Using WaveBook/512 with Turbo Pascal Chapter 8

8-10 WaveBook User’s Manual

 chs[1] := 3;
 chs[2] := 5;
 chs[3] := 7;

 for i := 0 to CHANS-1 do begin
 gains[i] := WgcX1; (* unity gain *)
 polarities[i] := 1; (* bipolar *)
 end;

The next line sets the error handler to use the custom error handling routine.

 wbkSetErrHandler(myhandler);

Initialize the WaveBook and put it on line. LPT port 1 and interrupt level 7 are used.

 wbkInit(LPT1, 7);

Enable data packing

 wbkSetDataPacking(1);

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamPrePost-specifies that both pre- and post-trigger scans are to be collected. An acquisition is
defined as a specified number of pre- and post-trigger scans sampled at a specified timebase. The 2nd
and 3rd arguments define the number of pre- and post-trigger scans, respectively.

 wbkSetAcq(WamPrePost, PRE_SCANS, POST_SCANS);

Set the scan configuration

 wbkSetScan(@chs, @gains, @polarities, CHANS);

This command sets the pre- and post-trigger sample frequencies.

 wbkSetFreq(PRE_FREQ, POST_FREQ);

Set the trigger source to an analog trigger on channel 1 at 2 volts

 wbkSetTrigAnalog(1, WgcX1, 1, WctRisingEdge, 2.0, 0.1);

This command arms the system to acquire data. Since no pre-trigger scans were configured, no data
will be available until the trigger is satisfied.

 wbkArm;

When pre-trigger scans are included in the acquisition, scans begin to be acquired the moment the
system is armed. Scans will continue to be acquired until the trigger is satisfied and the post-trigger is
complete. Your application program must transfer the acquired data into a buffer in the PC as it is
collected. Until the trigger occurs, your application must be prepared to accept data continuously,
potentially far in excess of the sum of the specified pre-trigger and post-trigger scan counts. This is
best accomplished by setting up a background transfer in cycle mode which will automatically transfer
the scans as they are collected and wrap the buffer as it becomes full. The following line sets up a
background transfer of the acquired scans into buf. Cycle mode is turned on, allowing the buffer to
wrap around as it becomes full.

 wbkBufferTransfer(@buf, BLOCK, 1, 1, 0, @active, @retCount);

The following lines monitor the background operation, waiting for the acquisition to be complete.

 while (active <> 0) do begin
 wbkGetBackStat(@active, @retCount);
 write('Transfer in progress: ', retCount, ' scans acquired.', chr(13));
 end;
 writeln;
 writeln('Acquisition complete.');

The following line unpacks the data so that each sample occupies an integer.

 wbkBufferUnpack(@buf, @buf, BLOCK, CHANS, retCount);

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-11

Since the buffer has potentially wrapped around, the earliest data is not at the beginning of the buffer.
The following line reorganizes the buffer so that the 1st pre-trigger scan occupies the 1st buffer
location and the last post-trigger scan occupies the last buffer location.

 wbkBufferRotate(@buf, BLOCK, CHANS, retCount);

The following lines print the acquired data.

 writeln('Pre_trigger data acquired:');
 for i := 0 to CHANS - 1 do begin
 write('Channel ', chs[i]:2, ' Data:');
 for j := 0 to PRE_SCANS - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;
 writeln('Post-trigger data acquired:');
 for i := 0 to CHANS - 1 do begin
 write('Channel ', chs[i]:2, ' Data:');
 for j := PRE_SCANS to BLOCK - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;

The WaveBook is taken off-line and reset.

 wbkClose;

Buffer Management
The following excerpts are from the example program ADCEX7.PAS found in the WaveBook
directory of your hard drive. This example demonstrates using double buffering in the background
mode, so that data can be read into one buffer while the another buffer can be processed in the
foreground.

Define program constants.

const
 CHANS = 8;
 SCANS = 20000;
 BLOCK = 1000;
 FREQ = 5000.0;

Buffers and variables used by program are declared.

var

 buf0:array[0..CHANS * BLOCK - 1] of integer;
 buf1:array[0..CHANS * BLOCK - 1] of integer;
 i, j:word;
 active:byte;
 retCount:longint;
 tmpActive:byte;
 tmpRetCount:longint;
 totals:array[0..CHANS - 1] of longint;
 whichBuf:integer;

Create custom error handler routine.

procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;

The next line sets the error handler to use the custom error handling routine.

 wbkSetErrHandler(myhandler);

Initialize the WaveBook and put it on line. LPT port 1 and interrupt level 7 are used.

 wbkInit(LPT1, 7);

Using WaveBook/512 with Turbo Pascal Chapter 8

8-12 WaveBook User’s Manual

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post- trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

 wbkSetAcq(WamNShot, 0, SCANS);

The following command defines the channels in a scan. The 1st and 2nd arguments define the start and
end channels of the scan. Unlike the command wbkSetScan, this command does not allow a separate
gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the scan in a
random order.

 wbkSetMux(1, CHANS, WgcX1, 1);

This command sets the pre- and post-trigger sample frequencies. Since this application does not
collect pre-trigger scans, the 1st argument is ignored.

 wbkSetFreq(1.0, FREQ);

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

 wbkSetTrigHardware(WtsSoftware, 0.0);

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

 wbkArm;

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

 wbkSoftTrig;

Start the data transfer into the first buffer

 wbkBufferTransfer(@buf0, BLOCK, 0, 0, 0, @tmpActive, @tmpRetCount);
 whichBuf := 0;

The contents of the two buffers are swapped. The loop continues until the acquisition completes or the
buffer fills.

 repeat
 if whichBuf = 1 then whichBuf := 0 else whichBuf := 1;

Wait for the acquisition to go inactive or the buffer to be filled.

 repeat
 wbkGetBackStat(@active, @retCount);
 until (active = 0) or (retCount = BLOCK);

If the previous acquisition is still active, another transfer into the next buffer begins.

if (active <> 0) then begin
 if (whichBuf = 0) then
 wbkBufferTransfer(@buf0, BLOCK, 0, 0, 0, @tmpActive, @tmpRetCount)
 else
 wbkBufferTransfer(@buf1, BLOCK, 0, 0, 0, @tmpActive, @tmpRetCount);
 end;

The following commands average the data in the process buffer and print the results.

 if (retCount > 0) then begin
 (* Average the readings in the process buffer and print the results *)
 for j := 0 to CHANS - 1 do totals[j] := 0;

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-13

 for i := 0 to retCount - 1 do begin
 for j := 0 to CHANS - 1 do begin
 if (whichBuf = 1) then
 totals[j] := totals[j] + buf0[i * CHANS + j]
 else
 totals[j] := totals[j] + buf1[i * CHANS + j];
 end;
 end;
 write('Averages:');
 for j := 0 to CHANS - 1 do begin
 write(' ',((5.0 * totals[j]) / (32768.0 * retCount)) :6:3);
 end;
 writeln;
 end;
 until (active = 0);

The WaveBook is taken off-line and reset.

 wbkClose;

Sample Programs

ADCEX1.PAS
(* This example demonstrates the use of the WaveBook's one-step *)
(* acquisition functions and user error handling. *)
(* Function used: *)
(* wbkRd(chan, &sample, gain, polarity); *)
(* wbkRdN(chan, buf, count, trigger, level, freq, gain, polarity); *)
(* wbkRdScan(startChan, endChan, buf, gain, polarity); *)
(* wbkRdScanN(startChan, endChan, buf, count, trigger, level, freq, *)
(* gain, polarity); *)
(* wbkSetErrHandler(wbkErrorHandler); *)
(* wbkInit(lptPort, lptIntr); *)
(* wbkClose(); *)
program adcex1;
uses wbk;
const
 CHANS = 8;
 SCANS = 10;
 FREQ = 1000.0;
 GAIN = WgcX1;
 BIPOLAR = 1;
var
 buf:array[0..CHANS * SCANS - 1] of integer;
 sample:integer;
 i, j:word;
procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;
begin
writeln;
 writeln('ADCEX1.PAS');
 (* Set error handler and initialize WaveBook *)
 wbkSetErrHandler(myhandler);
 wbkInit(LPT1, 7);
 (* Get a single sample from a single channel *)
 wbkRd(1, @sample, GAIN, BIPOLAR);
 (* Print result *)
 writeln('Result of Rd: ', sample:6);
 (*Get multiple samples from a single channel, triggered by a software trigger*)
 wbkRdN(1, @buf, SCANS, WtsSoftware, 0.0, FREQ, GAIN, BIPOLAR);
 (* Print results *)
 write('Results of RdN: ');
 for i := 0 to CHANS - 1 do write(' ', buf[i]:6);
 (* Get a single sample from multiple channels *)
 wbkRdScan(1, CHANS, @buf, GAIN, BIPOLAR);

 (* Print results *)
 writeln;
 writeln;

Using WaveBook/512 with Turbo Pascal Chapter 8

8-14 WaveBook User’s Manual

 writeln('Results of RdScan:');
 for i := 0 to CHANS - 1 do
 writeln('Channel ', (i + 1):2, ' Data: ', buf[i]:6);

 (*Get multiple samples from multiple channels, triggered by a software trigger*)
 wbkRdScanN(1, CHANS, @buf, SCANS, WtsSoftware, 0.0, FREQ, GAIN, BIPOLAR);

 (* Print results *)
 writeln;
 writeln('Results of RdScanN:');
 for i := 0 to CHANS - 1 do begin
 write('Channel ', (i + 1):2, ' Data: ');
 for j := 0 to SCANS - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;
 (* Close and exit *)
 wbkClose;
end.

ADCEX2.PAS
(* This example demonstrates the use of WaveBook's custom acquistion *)
(* functions. *)
(* Functions used: *)
(* wbkSetAcq(mode, preTrigCount, postTrigCount); *)
(* wbkSetMux(startChan, endChan, gain, polarity); *)
(* wbkSetFreq(preTrigFreq, postTrigFreq); *)
(* wbkGetFreq(preTrigFreq, postTrigFreq); *)
(* wbkGetPeriod(preTrigPeriod, postTrigPeriod); *)
(* wbkSetTrigHardware(source, level); *)
(* wbkArm(); *)
(* wbkSoftTrig(); *)
(* wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, *)
(* active, retCount); *)
(* wbkInit(lptPort, lptIntr); *)
(* wbkClose(); *)
program adcex2;
uses wbk;
const
 CHANS = 8;
 SCANS = 10;
 BLOCK = 6;
 FREQ = 5.0;
var
 buf:array[0..CHANS * BLOCK - 1] of integer;
 i, j:word;
 active:byte;
 retCount:longint;
 pre_trig_freq, post_trig_freq:double;
 pre_trig_period, post_trig_period:double;

procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;
begin
 writeln;
 writeln('ADCEX2.PAS');
 writeln;
 (* Set error handler and initialize WaveBook *)
 wbkSetErrHandler(myhandler);
 wbkInit(LPT1, 7);
 (* Set the acquisition to NShot on trigger and the post-trigger scan count *)
 wbkSetAcq(WamNShot, 0, SCANS);
 (* Set the scan configuration *)
 wbkSetMux(1, CHANS, WgcX1, 1);
 (* Set the post-trigger scan rates *)
 wbkSetFreq(1.0, FREQ);
 (* Get the pre-trigger and post-trigger scan rates in frequency and period *)
 wbkGetFreq(@pre_trig_freq, @post_trig_freq);
 writeln('Result wbkGetFreq: pre-trigger=', pre_trig_freq:0:2,
 'Hz, post-trigger=', post_trig_freq:0:2, 'Hz');

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-15

 wbkGetPeriod(@pre_trig_period, @post_trig_period);
 writeln('Result wbkGetPeriod: pre-trigger=', pre_trig_period:0:0,
 'ns, post-trigger=', post_trig_period:0:0, 'ns');
 (* Set the trigger source to a software trigger command *)
 wbkSetTrigHardware(WtsSoftware, 0.0);
 (* Arm the acquisition *)
 wbkArm;
 (* Issue a software trigger command to the hardware *)
 wbkSoftTrig;
 repeat
 (* Read BLOCK scans from the hardware with cycle mode off, *)
 (* updateSingle on and foreground enabled *)
 wbkBufferTransfer(@buf, BLOCK, 0, 1, 1, @active, @retCount);
 (* Print results *)
 writeln;
 writeln('Result wbkBufferTransfer: retCount=', retCount, ', active=',
active);
 for i := 0 to retCount - 1 do begin
 write('Scan ', (i + 1):5, ':');
 for j := 0 to CHANS - 1 do write(' ', buf[i * CHANS + j]:6);
 writeln;
 end;
 until (active = 0);
 (* Close and exit *)
 wbkClose;
end.

ADCEX3.PAS
(* This example takes multiple scans from hardware using a software trigger. *)
(* Each scan includes the high speed digital I/O port (channel 0) and *)
(* two analog channels: 5 and 8. *)
(* Functions used: *)
(* wbkSetAcq(mode, preTrigCount, postTrigCount); *)
(* wbkSetScan(chans, gains, polarities, count); *)
(* wbkSetFreq(preTrigFreq, postTrigFreq); *)
(* wbkSetTrigHardware(source, level); *)
(* wbkArm(); *)
(* wbkSoftTrig(); *)
(* wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, *)
(* active, retCount); *)
(* wbkGetDriverVersion(version); *)
(* wbkInit(lptPort, lptIntr); *)
(* wbkClose(); *)
program adcex3;
uses wbk;
const
 FREQ = 5;
 SCANS = 10;
 CHANS = 3;
var
 buf:array[0..CHANS * SCANS - 1] of integer;
 i, j:word;
 version:word;
 chs:array[0..CHANS - 1] of word;
 gains:array[0..CHANS - 1] of byte;
 polarities:array[0..CHANS - 1] of byte;
 active:byte;
 retCount:longint;
procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;
begin
 writeln;
 writeln('ADCEX3.PAS');
 writeln;
 (* Scan sequence definition *)
 chs[0] := 0; (* high speed digital channel *)
 chs[1] := 5; (* analog channel 5 *)
 chs[2] := 8; (* analog channel 8 *)

Using WaveBook/512 with Turbo Pascal Chapter 8

8-16 WaveBook User’s Manual

 (* Channel gains and polarities setting *)
 for i := 0 to 2 do begin
 gains[i] := WgcX1; (* unity gain *)
 polarities[i] := 1; (* bipolar *)
 end;
 (* Get driver version *)
 wbkGetDriverVersion(@version);
 writeln('Using driver version ', (0.01 * version):0:2);
 writeln;
 (* Set error handler and initialize WaveBook *)
 wbkSetErrHandler(myhandler);
 wbkInit(LPT1, 7);
 (* Set the acquisition to NShot on trigger and the post-trigger scan count *)
 wbkSetAcq(WamNShot, 0, SCANS);
 (* Set the scan configuration *)
 wbkSetScan(@chs, @gains, @polarities, CHANS);
 (* Set the post-trigger scan rates *)
 wbkSetFreq(1.0, FREQ);
 (* Set the trigger source to a software trigger command *)
 wbkSetTrigHardware(WtsSoftware, 0.0);
 (* Arm the acquisition *)
 wbkArm;
 (* Issue a software trigger command to the hardware *)
 wbkSoftTrig;
 (* Read SCANS scans from the hardware with cycle mode off, *)
 (* updateSingle on and foreground enabled *)
 wbkBufferTransfer(@buf, SCANS, 0, 1, 1, @active, @retCount);
 (* Print results *)
 writeln('Results of BufferTransfer:');
 writeln('Scan Digital_ch_0 Analog_ch_5 Analog_ch_8');
 for i := 0 to retCount - 1 do begin
 (* get the upper (valid) 8 bits of the digital input *)
 buf[CHANS * i] := buf[CHANS * i] shr 8;
 write(' ', (i + 1):2, ' ');
 for j := 0 to 2 do write(' ', buf[CHANS * i + j]:6, ' ');
 writeln;
 end;
 (* Close and exit *)
 wbkClose;
end.

ADCEX4.PAS
(* This example reads scans of multiple channels in the background mode *)
(* and uses a software trigger to start the acquisition. *)
(* Functions used: *)
(* wbkSetAcq(mode, preTrigCount, postTrigCount); *)
(* wbkSetFreq(preTrigFreq, postTrigFreq); *)
(* wbkSetMux(startChan, endChan, gain, polarity); *)
(* wbkSetTrigHardware(source, level); *)
(* wbkArm(); *)
(* wbkSoftTrig(); *)
(* wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, *)
(* active, retCount); *)
(* wbkGetBackStat(active, retCount); *)
(* wbkInit(lptPort, lptIntr); *)
(* wbkClose(); *)
program adcex4;
uses wbk;
const
 CHANS = 8;
 SCANS = 9;
 FREQ = 2.0;
var
 buf:array[0..CHANS * SCANS - 1] of integer;
 i, j:word;
 active:byte;
 retCount: longint;
procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-17

begin
 writeln;
 writeln('ADCEX4.PAS');
 writeln;
 (* Set error handler and initialize WaveBook *)
 wbkSetErrHandler(myhandler);
 wbkInit(LPT1, 7);
 (* Set the acquisition to NShot on trigger and the post-trigger scan count *)
 wbkSetAcq(WamNShot, 0, SCANS);
 (* Set the scan configuration *)
 wbkSetMux(1, CHANS, WgcX1, 1);
 (* Set the post-trigger scan rates *)
 wbkSetFreq(1.0, FREQ);
 (* Set the trigger source to a software trigger command *)
 wbkSetTrigHardware(WtsSoftware, 0.0);
 (* Arm the acquisition *)
 wbkArm;
 (* Start reading data in the background mode with cycle mode off *)
 (* and updateSingle on *)
 wbkBufferTransfer(@buf, SCANS, 0, 1, 0, @active, @retCount);
 (* Issue a software trigger command to the hardware *)
 wbkSoftTrig;
 (* Monitor the progress of the background transfer *)
 repeat
 wbkGetBackStat(@active, @retCount);
 write('Transfer in progress: ', retCount, ' scans acquired.', chr(13));
 until active = 0;
 writeln;
 writeln('Acquisition complete.');
 writeln;
 (* Print results *)
 writeln('Data acquired:');
 for i := 0 to CHANS - 1 do begin
 write('Channel ', (i + 1):2, ' Data:');
 for j := 0 to retCount - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;
 (* Close and Exit *)
 wbkClose;
end.

ADCEX5.PAS
(* This example takes multiple scans from hardware using a complex analog *)
(* trigger. The acquisition will start on a rising-edge of channel 1 at *)
(* 2 volts OR a falling edge on channel 2 at 3 volts. *)
(* Functions used: *)
(* wbkSetAcq(mode, preTrigCount, postTrigCount); *)
(* wbkSetMux(startChan, endChan, gain, polarity); *)
(* wbkSetFreq(preTrigFreq, postTrigFreq); *)
(* wbkSetTrigComplex(chans, gains, polarities, rising, levels, *)
(* hysteresis, count, opstr); *)
(* wbkArm(); *)
(* wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, *)
(* active, retCount); *)
(* wbkInit(lptPort, lptIntr); *)
(* wbkClose(); *)
program adcex5;
uses wbk;
const
 FREQ = 1000;
 SCANS = 9;
 CHANS = 3;
 NUM_TRIG= 2;
var

 buf:array[0..CHANS * SCANS - 1] of integer;
 i, j: integer;
 retCount:longint;
 active:byte;
 chans_tr:array[0..NUM_TRIG - 1] of word;
 gains_tr:array[0..NUM_TRIG - 1] of byte;
 polarity_tr:array[0..NUM_TRIG - 1] of byte;

Using WaveBook/512 with Turbo Pascal Chapter 8

8-18 WaveBook User’s Manual

 rising:array[0..NUM_TRIG - 1] of byte;
 levels:array[0..NUM_TRIG - 1] of single;
 hysteresis:array[0..NUM_TRIG - 1] of single;
 opstr:string;

procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;
begin
 writeln;
 writeln('ADCEX5.PAS');
 writeln;
 (* Initialize the complex trigger arrays for a rising-edge on channel 1 *)
 (* at 2 volts OR a falling-edge on channel 2 at 3 volts *)
 chans_tr[0] := 1;
 gains_tr[0] := WgcX1;
 polarity_tr[0] := 1;
 rising[0] := WcrRisingEdge;
 levels[0] := 2.0;
 hysteresis[0] := 0.1;
 chans_tr[1] := 2;
 gains_tr[1] := WgcX1;
 polarity_tr[1] := 1;
 rising[1] := WcrFallingEdge;
 levels[1] := 3.0;
 hysteresis[1] := 0.1;
 opstr := '+';
 (* Set error handler and initialize WaveBook *)
 wbkSetErrHandler(myhandler);
 wbkInit(LPT1, 7);
 (* Set the acquisition to NShot on trigger and the post-trigger scan count *)
 wbkSetAcq(WamNShot, 0, SCANS);
 (* Set the scan configuration *)
 wbkSetMux(1, CHANS, WgcX1, 1);
 (* Set post-trigger scan rates *)
 wbkSetFreq(1.0, FREQ);
 writeln('Waiting for complex trigger at channels 1 and 2...');
 writeln;
 (* Set the trigger source to the complex trigger previously defined *)
 wbkSetTrigComplex(@chans_tr, @gains_tr, @polarity_tr, @rising, @levels,
 @hysteresis, NUM_TRIG, opstr);
 (* Arms the acquisition *)
 wbkArm;
 (* Read SCANS scans from the hardware with cycle mode off, *)
 (* updateSingle on and foreground enabled *)
 wbkBufferTransfer(@buf, SCANS, 0, 1, 1, @active, @retCount);
 (* Print results *)
 writeln('Results of BufferTransfer:');
 for i := 0 to CHANS - 1 do begin
 write('Channel ', (i + 1):2, ' Data: ');
 for j := 0 to retCount - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;
 (* Close and exit *)
 wbkClose;
end.

ADCEX6.PAS
(* This example demonstrates an acquisition made up of pre-trigger and *)
(* post-trigger scans from multiple channels using a DSP-based analog *)
(* trigger. It also uses data packing and rotating. *)
(* Functions used: *)
(* wbkSetAcq(mode, preTrigCount, postTrigCount); *)
(* wbkSetFreq(preTrigFreq, postTrigFreq); *)
(* wbkSetScan(chans, gains, polarities, chanCount); *)
(* wbkSetTrigAnalog(chan, gain, polarity, rising, level, hysteresis); *)
(* wbkArm(); *)
(* wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, *)
(* active, retCount); *)
(* wbkBufferUnpack(packedBuf, unpackedBuf, scanCount, chanCount, *)

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-19

(* retCount); *)
(* wbkBufferRotate(buf, scanCount, chanCount, retCount); *)
(* wbkGetBackStat(active, retCount); *)
(* wbkInit(lptPort, lptIntr); *)
(* wbkClose(); *)
program adcex6;
uses wbk;
const
 CHANS = 4;
 PRE_SCANS = 5;
 POST_SCANS = 9;
 PRE_FREQ = 100.0;
 POST_FREQ = 200.0;
 BLOCK = PRE_SCANS+POST_SCANS;
var
 buf:array[0..CHANS * BLOCK - 1] of integer;
 i, j:word;
 chs:array[0..CHANS-1] of word;
 gains:array[0..CHANS-1] of byte;
 polarities:array[0..CHANS-1] of byte;
 active:byte;
 retCount:longint;
 pre_trig_freq, post_trig_freq:double;
 pre_trig_period, post_trig_period:double;
procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;
begin
 writeln;
 writeln('ADCEX6.PAS');
 writeln;
 (* Scan sequence definition *)
 chs[0] := 1;
 chs[1] := 3;
 chs[2] := 5;
 chs[3] := 7;
 for i := 0 to CHANS-1 do begin
 gains[i] := WgcX1; (* unity gain *)
 polarities[i] := 1; (* bipolar *)
 end;
 (* Set error handler and initialize WaveBook *)
 wbkSetErrHandler(myhandler);
 wbkInit(LPT1, 7);
 (* Enable Data Packing *)
 wbkSetDataPacking(1);
 (* Set the acquisition for pre/post-trigger mode and the scan counts *)
 wbkSetAcq(WamPrePost, PRE_SCANS, POST_SCANS);
 (* Set the scan configuration *)
 wbkSetScan(@chs, @gains, @polarities, CHANS);
 (* Set the pre-trigger and post-trigger scan rates *)
 wbkSetFreq(PRE_FREQ, POST_FREQ);
 (* Set the trigger source to an analog trigger on channel 1 at 2 volts *)
 wbkSetTrigAnalog(1, WgcX1, 1, WctRisingEdge, 2.0, 0.1);
 (* Arm the acquisition *)
 wbkArm;
 (* Start reading data in the background mode with cycle mode on *)
 (* and updateSingle off *)
 wbkBufferTransfer(@buf, BLOCK, 1, 1, 0, @active, @retCount);
 (* Monitor the progress of the background transfer *)
 while (active 0) do begin
 wbkGetBackStat(@active, @retCount);
 write('Transfer in progress: ', retCount, ' scans acquired.', chr(13));
 end;
 writeln;
 writeln('Acquisition complete.');
 (* Unpack the packed data using the same buffer *)
 wbkBufferUnpack(@buf, @buf, BLOCK, CHANS, retCount);
 (* Rotate the unpacked buffer data so that the earliest is at the start *)
 (* and the latest is at the end of the buffer. *)
 wbkBufferRotate(@buf, BLOCK, CHANS, retCount);
 (* Print results *)
 writeln('Pre_trigger data acquired:');

Using WaveBook/512 with Turbo Pascal Chapter 8

8-20 WaveBook User’s Manual

 for i := 0 to CHANS - 1 do begin
 write('Channel ', chs[i]:2, ' Data:');
 for j := 0 to PRE_SCANS - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;
 writeln('Post-trigger data acquired:');
 for i := 0 to CHANS - 1 do begin
 write('Channel ', chs[i]:2, ' Data:');
 for j := PRE_SCANS to BLOCK - 1 do write(' ', buf[(j * CHANS) + i]:6);
 writeln;
 end;
 (* Close and Exit *)
 wbkClose;
end.

ADCEX7.PAS
(* This example demonstrates using double buffering in the background *)
(* mode, so that data can be read into one buffer while the another buffer *)
(* can be processed in the foreground. *)
(* Functions used: *)
(* wbkSetAcq(mode, preTrigCount, postTrigCount); *)
(* wbkSetMux(startChan, endChan, gain, polarity); *)
(* wbkSetFreq(preTrigFreq, postTrigFreq); *)
(* wbkSetTrigHardware(source, level); *)
(* wbkArm(); *)
(* wbkSoftTrig(); *)
(* wbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, *)
(* active, retCount); *)
(* wbkGetBackStat(active, retCount); *)
(* wbkInit(lptPort, lptIntr); *)
(* wbkClose(); *)
program adcex7;
uses wbk;
const
 CHANS = 8;
 SCANS = 20000;
 BLOCK = 1000;
 FREQ = 5000.0;
var
 buf0:array[0..CHANS * BLOCK - 1] of integer;
 buf1:array[0..CHANS * BLOCK - 1] of integer;
 i, j:word;
 active:byte;
 retCount:longint;
 tmpActive:byte;
 tmpRetCount:longint;
 totals:array[0..CHANS - 1] of longint;
 whichBuf:integer;
procedure myhandler(error_code:integer);
begin
 writeln('Error! Program aborted');
 writeln('WaveBook Error: ', error_code);
 halt;
end;
begin
 writeln;
 writeln('ADCEX7.PAS');
 writeln;
 (* Set error handler and initialize WaveBook *)
 wbkSetErrHandler(myhandler);
 wbkInit(LPT1, 7);
 (* Set the acquisition to NShot on trigger and the post-trigger scan count *)
 wbkSetAcq(WamNShot, 0, SCANS);
 (* Set the scan configuration *)
 wbkSetMux(1, CHANS, WgcX1, 1);
 (* Set post-trigger scan rates *)
 wbkSetFreq(1.0, FREQ);
 (* Set the trigger source to a software trigger command *)
 wbkSetTrigHardware(WtsSoftware, 0.0);
 (* Arm the acquisition *)
 wbkArm;
 (* Issue a software trigger command to the hardware *)
 wbkSoftTrig;
 (* Start reading data into the first buffer *)

Chapter 8 Using WaveBook/512 with Turbo Pascal

WaveBook User’s Manual 8-21

 wbkBufferTransfer(@buf0, BLOCK, 0, 0, 0, @tmpActive, @tmpRetCount);
 whichBuf := 0;
 repeat
 (* Swap the buffer selector, whichBuf selects the transfer buffer *)
 if whichBuf = 1 then whichBuf := 0 else whichBuf := 1;
 (* Wait for the acquisition to go inactive or the buffer to be filled *)
 repeat
 wbkGetBackStat(@active, @retCount);
 until (active = 0) or (retCount = BLOCK);
 (* If the previous acquisition is still active, start another transfer *)
 (* into the next buffer *)
 if (active 0) then begin
 if (whichBuf = 0) then
 wbkBufferTransfer(@buf0, BLOCK, 0, 0, 0, @tmpActive, @tmpRetCount)
 else
 wbkBufferTransfer(@buf1, BLOCK, 0, 0, 0, @tmpActive, @tmpRetCount);
 end;
 (* Process the data into the process buffer *)
 if (retCount 0) then begin
 (* Average the readings in the process buffer and print the results *)
 for j := 0 to CHANS - 1 do totals[j] := 0;
 for i := 0 to retCount - 1 do begin
 for j := 0 to CHANS - 1 do begin
 if (whichBuf = 1) then
 totals[j] := totals[j] + buf0[i * CHANS + j]
 else
 totals[j] := totals[j] + buf1[i * CHANS + j];
 end;
 end;
 write('Averages:');
 for j := 0 to CHANS - 1 do begin
 write(' ', ((5.0 * totals[j]) / (32768.0 * retCount)):6:3);
 end;
 writeln;
 end;
 until (active = 0);
 (* Close and Exit *)
 wbkClose;
end.

Using WaveBook/512 with Turbo Pascal Chapter 8

8-22 WaveBook User’s Manual

- Notes

Using WaveBook/512 with VB Subroutines Support 9

WaveBook User’s Manual 9-1

This chapter describes the use of the Visual Basic language with the standard API to develop a basic
data acquisition program. For additional functions of the standard API, refer to chapter 10. Note: The
WaveBook system includes full-featured DOS and Windows software drivers for C (chapter 6),
QuickBASIC (chapter 7), Turbo Pascal (chapter 8), and Visual Basic. The enhanced API (for C,
Visual Basic and Delphi) is described in chapters 11 and 12.

Accessing WaveBook from a Windows Program
The structure of a Windows program generally dictates that actions take place in response to messages
such as an operator key-press, mouse action, menu selection, etc. This discussion covers the basic
actions needed to control the WaveBook. How these actions are combined and coordinated in response
to Windows messages is up to the application designer.

Accessing WaveBook from a Visual Basic Program
WaveBook provides support for Microsoft's Visual Basic. Visual Basic includes a tool palette for
designing your application's user interface, letting you use point-and-click operations to design and test
your entire user interface. For example, to place a button in one of your application's windows, you
simply select the button tool from the tool palette, then click and drag in the desired window to place
and size the button.

To program the WaveBook from Visual Basic for Windows, the file WAVEBOOK.BAS must be
included in the Visual Basic project along with any forms that make up your program.

To run the example program included in the WAVEBOOK\WIN\VB directory, create a new project by
selecting New under the file menu. Remove the default form, FORM1, in the project window and add
the files WBKEX.FRM and WAVEBOOK.BAS to the project. Finally, select form1 of WBKEX.FRM
to be the startup form of the project by selecting PROJECT under the OPTIONS menu.

Simple Analog Input
The following subroutine, ADC1_CLICK within WBKEX.FRM, shows the usage of several high level
analog input routines.

This subroutine will initialize the WaveBook hardware, then take readings from the analog input
channels in the base unit (not the expansion cards).

Although not necessary, this subroutine includes an error handler which vectors program control to a
user defined routine when a WaveBook error is detected. If no error handler is supplied, Visual Basic
will receive and handle the error, posting the error on the screen and terminating the subroutine.

Visual Basic provides an integer variable, ERR, which contains the error code of the most recent error.
This variable can be used in user defined error handlers to detect the error source and take the
appropriate action. The function VBwbkSetErrHandler tells Visual Basic to assign ERR to a specific
value when a WaveBook error is encountered.

For transporting data in and out of the WaveBook driver, arrays are dimensioned.

ReDim buf%(SCANS& * CHANS%)

Dim i%, j%
Dim sample%
Dim ret%

The following line tells Visual BASIC to set ERR to 100 when a WaveBook error is encountered.

ret% = VBwbkSetErrHandler%(100)

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-2 WaveBook User’s Manual

The ON ERROR GOTO command is part of the Visual BASIC command set. It allows a user defined
error handler to be provided, rather than the standard error handler that Visual BASIC uses
automatically. The program uses ON ERROR GOTO to vector program control to the label
ErrorHandler if an error is encountered.

On Error GoTo ErrorHandlerADC1

The next line tells the driver library which LPT port or base address and what interrupt line is being
used, then initializes the WaveBook hardware.

ret% = VBwbkInit%(LPT1%, IRQ7%)

The next command will retrieve 1 sample at a gain of 1. The polarity set to bipolar.

ret% = VBwbkRd%(1, sample%, GAIN%, BIPOLAR%)

The results of the are then printed.

Print "Result of Rd: "; sample%
Print

Next, 8 samples are acquired from channel 1 using software triggering. A 1000Hz sampling frequancy
is used with unity gain for bipolar signals. The data returned data is stored in the integer array buffer.

ret% = VBwbkRdN%(1, buf%(0), SCANS&, WtsSoftware%, 0!, FREQ#, GAIN%, BIPOLAR%)
The results are then printed.
Print "Results of RdN:"
Print "Channel 1 Data: ";
For i% = 0 To SCANS& - 1
 Print Tab(i% * 7 + 17); buf%(i%);
Next i%
Print
Print

The following command collects 1 sample from multiple channels. The following function arguments
define a scan starting with channel 1 and ending with channel 8. This command sets all the channels to
the same gain and unipolar/bipolar setting. The data is returned in the array buffer.

ret% = VBwbkRdScan%(1, CHANS%, buf%(0), GAIN%, BIPOLAR%)

The results are printed.

Print "Results of RdScan:"
For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data: "; buf%(i%)
Next i%
Print

The following command collects multiple scans consisting of multiple channels. Like wbkRdScan, this
command sets all the channels to the same gain and unipolar/bipolar setting. Since multiple scans are
being collected, a trigger source and timebase is required. The arguments shown set the trigger source
to Software causing an immediate trigger. The sample frequency of 1 Khz.

ret% = VBwbkRdScanN%(1, CHANS%, buf%(0), SCANS&, WtsSoftware%, 0!, FREQ#, GAIN%,
BIPOLAR%)

The results are printed.

Print "Results of RdScanN:"
For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data: ";
 For j% = 0 To SCANS& - 1
 Print Tab(j% * 7 + 17); buf%(j% * CHANS% + i%);
 Next j%
 Print
Next i%

The subroutine is closed and exited.

ret% = VBwbkClose%()
Exit Sub

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-3

Low-Level Analog Input
The following subroutine, ADC2_CLICK within WBKEX.FRM, shows the usage of the lowest level
WaveBook driver functions. These functions are more complex than the high level functions but allow
the greatest flexibility.

Constants and arrays are defined.

Const CHANS% = 8 ' number of channels in scan
Const SCANS& = 10 ' number of scans
Const BLOCK% = 6 ' number scans reading for one time
Const FREQ# = 5# ' postTrig scan rates in Hz

ReDim buf%(BLOCK% * CHANS%)

Dim i%, j%
Dim active%
Dim retCount&
Dim preTrigFreq#, postTrigFreq#
Dim preTrigPeriod#, postTrigPeriod#
Dim ret%

 Set the error handler and initialize the WaveBook.

ret% = VBwbkSetErrHandler%(100)
On Error GoTo ErrorHandlerADC2
ret% = VBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post- trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)

The following command defines the channels in a scan. The 1st and 2nd arguments define the start and
end channels of the scan. Unlike the command wbkSetScan, this command does not allow a separate
gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the scan in a
random order.

ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

ret% = VBwbkSetFreq%(1#, FREQ#)

The following line shows the usage of the wbkGetFreq command which returns the present settings for
the pre- and post-trigger frequencies.

ret% = VBwbkGetFreq%(preTrigFreq#, postTrigFreq#)

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

ret% = VBwbkArm%()

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-4 WaveBook User’s Manual

ret% = VBwbkSoftTrig%()

The following lines perform a foreground transfer from the WaveBook of size BLOCK. The data is
then printed on the screen. The transfers will continue until the acquisition is no longer active.

Do
 ' Read BLOCK scans from the hardware with cycle mode off,
 ' updateSingle on and foreground enabled
 ret% = VBwbkBufferTransfer%(buf%(0), BLOCK%, 0, 1, 1, active%, retCount&)

 ' Print results
 Print "Result of BufferTransfer: retCount="; retCount&; " active="; active%
 For i% = 0 To retCount& -1
 Print "Scan"; i% + 1; "Data:";
 For j% = 0 To CHANS% -1
 Print Tab(j% * 7 + 17); buf%(i% * CHANS% + j%);
 Next j%
 Print
 Next i%
 Print
Loop While active% 0

Accessing the High-Speed Digital Input Port
The following subroutine, ADC3_CLICK within WBKEX.FRM, shows how to collect analog and
high speed digital signals concurrently, in the same scan.

Constants and arrays are defined.
Const FREQ# = 5
Const SCANS& = 10
Const CHANS% = 3

ReDim buf%(SCANS& * CHANS%)

Dim i%, j%
Dim active%
Dim retCount&

Dim version%
ReDim chan%(CHANS%)
ReDim gains%(CHANS%), polarities%(CHANS%)
Dim ret%

Set scan sequence definitions

chan%(0) = 0 ' high speed digital channel
chan%(1) = 5 ' analog channel 5
chan%(2) = 8 ' analog channel 8

Set gains and polarities.

For i% = 0 To CHANS% - 1
 gains%(i%) = WgcX1% ' unity gain
 polarities%(i%) = 1 ' bipolar
Next i%

Get the driver version and print.

ret% = VBwbkGetDriverVersion%(version%)
Print "Using driver version: "; Format$(.01 * version, "0.00")
Print

Set error handler and initialize WaveBook.

ret% = VBwbkSetErrHandler%(100)
On Error GoTo ErrorHandlerADC3
ret% = VBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-5

specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)

Setup the scan by passing the channel configuration arrays to the wbkSetScan command.

ret% = VBwbkSetScan%(chan%(), gains%(), polarities%(), CHANS%)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

ret% = VBwbkSetFreq%(1#, FREQ#)

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

ret% = VBwbkArm%()

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

ret% = VBwbkSoftTrig%()

The next line performs a foreground data transfer from the WaveBook's internal buffer to the PC's
memory. The foreground transfer will continue until its buffer is full or the acquisition is complete.

ret% = VBwbkBufferTransfer%(buf%(0), SCANS&, 0, 1, 1, active%, retCount&)

The following lines print the transferred data.

Print "Results of BufferTransfer:"
Print " Digital_ch_0 Analog_ch_5 Analog_ch_8"
For i% = 0 To retCount& - 1
 ' shift the upper (valid) 8 bits of the digital input to the lower 8 bits
 buf%(i% * CHANS%) = ((buf%(i% * CHANS%) And &HFF00) \ 256) And &HFF
 Print "Scan"; i% + 1; "Data:";
 For j% = 0 To CHANS% - 1
 Print Tab(j% * 14 + 17); buf%(i% * CHANS% + j%);
 Next j%
 Print
Next i%

Background Processing of Analog Input
The following subroutine, ADC4_CLICK within WBKEX.FRM, shows how to collect analog samples
and transfer them into the PC's memory in the background. Once the background acquisition is
configured and armed, your program can perform other operations concurrently with the background
data collection. The foreground program can use the wbkGetBackStat command to periodically check
on the status of the acquisition.

For performing acquisitions that are greater in size than the allocated buffer, the background operation
can be set to Cycle mode which will wrap around in the allocated buffer as it becomes full. In this
mode, your program must monitor the background and transfer the data out of the allocated buffer
before the background operation overwrites it.

Constants and declarations are first defined.

Const CHANS% = 8

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-6 WaveBook User’s Manual

Const SCANS& = 9
Const FREQ# = 2

ReDim buf%(SCANS& * CHANS%)

Dim i%, j%
Dim active%
Dim retCount&
Dim ret%

Set error handller and initialize the WaveBook.

ret% = VBwbkSetErrHandler%(100)
On Error GoTo ErrorHandlerADC4
ret% = VBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)

To create a channel scan of non sequential channels with independent gain and unipolar/bipolar
settings, the arrays of channel parameters must be created and passed to wbkSetScan.

ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

ret% = VBwbkSetFreq%(1#, FREQ#)

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

ret% = VBwbkArm%()

The following line sets up a background transfer. Regardless of the state of the acquisition, the
program will immediately return from this function call and proceed to the next line. As the data is
collected by the WaveBook, it is automatically transferred to the buffer.

ret% = VBwbkBufferTransfer%(buf%(0), SCANS&, 0, 1, 0, active%, retCount&)

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

ret% = VBwbkSoftTrig%()

Although your program can begin processing other tasks at this point, our example program simply
monitors the background until the user hits a key or the acquisition is complete.

Print "Waiting for trigger."
While retCount& = 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
Wend
Print "Triggered. Transfer in progress."
While active% 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
Wend

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-7

Print "Acquisition complete:"; retCount&; "scans acquired."
Print

The following lines print the collected data.

Print "Data acquired:"
For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data:";
 For j% = 0 To SCANS& - 1
 Print Tab(j% * 7 + 17); buf%(j% * CHANS% + i%);
 Next j%
 Print
Next i%

Complex Triggering
The following subroutine, ADC5_CLICK within WBKEX.FRM, shows how to setup a complex
trigger where more than one channel can be combined in a logical trigger equation.

Define constants and arrays.

Const FREQ# = 1000
Const SCANS& = 9
Const CHANS% = 3
Const NUM_TRIG% = 2

ReDim buf%(SCANS& * CHANS%)

Dim i%, j%
Dim active%
Dim retCount&
ReDim chan_tr%(NUM_TRIG%)
ReDim gains_tr%(NUM_TRIG%), polarity_tr%(NUM_TRIG%)
ReDim rising%(NUM_TRIG%)
ReDim levels!(NUM_TRIG%), hysteresis!(NUM_TRIG%)
Dim opstr$
Dim ret%

The following lines are definitions and initialization for the variables used for setting up the trigger
equation. The variable chans_tr is an array of channels used in the trigger equation. Channels 1 and 2
are specified. The variable gain_tr is an array that holds the gains for channels 1 and 2. In this case
they are both set to X1. Channels 1 and 2 can also be a part of the scan group with the same or
different gain assignments. The variable polarity_tr is an array that holds the unipolar/bipolar settings
for channels 1 and 2. The variable rising is an array that holds the edge settings for channels 1 and 2.
In this case, channel 1 triggers on the rising edge, while channel 2 triggers on the falling edge. The
variables levels and hysteresis are arrays that hold the voltage thresholds and hysteresis settings for
channels 1 and 2, respectively. The variable opstr holds the boolean operator for the trigger equation.
The + sign indicates an OR operator between channels 1 and 2.

chan_tr%(0) = 1
gains_tr%(0) = WgcX1%
polarity_tr%(0) = 1
rising%(0) = WctRisingEdge%
levels!(0) = 2
hysteresis!(0) = .1

chan_tr%(1) = 2
gains_tr%(1) = WgcX1%
polarity_tr%(1) = 1
rising%(1) = WctFallingEdge%
levels!(1) = 3
hysteresis!(1) = .1

opstr$ = "+"

The previous definitions create the following trigger setup:

System Trigger = (CH1 @ X1, bipolar, rising edge through 2.0V with 0.1V hyst) OR (CH2 @ X1,
bipolar, falling edge through 3.0V with 0.1V hyst)

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-8 WaveBook User’s Manual

Next, the error handler is set and the WaveBook is initialized.

ret% = VBwbkSetErrHandler%(100)
On Error GoTo ErrorHandlerADC5
ret% = VBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post-trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)

Set the scan configuration.

ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

ret% = VBwbkSetFreq%(1#, FREQ#)

The following lines notify the user of the system's status then setup the complex trigger.

Print "Waiting for complex trigger of channels 1 or 2..."
Print
ret% = VBwbkSetTrigComplex%(chan_tr%(), gains_tr%(), polarity_tr%(), rising%(),
levels!(), hysteresis!(), NUM_TRIG%, opstr$)

This command arms the system to acquire data. Since no pre-trigger scans were configured, no data
will be available until the trigger is satisfied.

ret% = VBwbkArm%()

The next line performs a foreground data transfer from the WaveBook's internal buffer to the PC's
memory. The foreground transfer will continue until its buffer is full or the acquisition is complete. If
the trigger is not satisfied within the programmed timeout, the driver will return control to the program.
If you do not want your program to "hang" until the trigger is satisfied, it is recommended that a
background transfer be used. Once your program initiates a background transfer, control is passed
back to your program to perform other tasks while waiting for a trigger or collecting data.

ret% = VBwbkBufferTransfer%(buf%(0), SCANS&, 0, 1, 1, active%, retCount&)

Print the transferred data.

Print "Results of BufferTransfer:"
For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data:";
 For j% = 0 To SCANS& - 1
 Print Tab(j% * 7 + 17); buf%(j% * CHANS% + i%);
 Next j%
 Print
Next i%

Pre- and Post-Trigger Acquisitions
The following subroutine, ADC6_CLICK within WBKEX.FRM, shows how to setup and process
acquisitions with both pre- and post-trigger scans.

Define constants and arrays.

Const CHANS% = 4
Const PRE_SCANS& = 5
Const POST_SCANS& = 9
Const PRE_FREQ# = 100#
Const POST_FREQ# = 200#
Const BLOCK% = (PRE_SCANS& + POST_SCANS&)

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-9

ReDim buf%(BLOCK% * CHANS%)

Dim i%, j%
Dim active%
Dim retCount&
ReDim chan%(CHANS%)
ReDim gains%(CHANS%), polarities%(CHANS%)
Dim ret%

Channels, gains, and polarity are defined for the scan.

chan%(0) = 1 ' channel numbers
chan%(1) = 3
chan%(2) = 5
chan%(3) = 7
For i% = 0 To CHANS% - 1
 gains%(i%) = WgcX1% ' unity gain
 polarities%(i%) = 1 ' bipolar
Next i%

Set error handler and initialize WaveBook.

ret% = VBwbkSetErrHandler%(100)
On Error GoTo ErrorHandlerADC6
ret% = VBwbkInit%(LPT1%, IRQ7%)

Enable data packing.

ret% = VBwbkSetDataPacking%(1)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamPrePost-specifies that both pre- and post-trigger scans are to be collected. An acquisition is
defined as a specified number of pre- and post-trigger scans sampled at a specified timebase. The 2nd
and 3rd arguments define the number of pre- and post-trigger scans, respectively.

ret% = VBwbkSetAcq%(WamPrePost%, PRE_SCANS&, POST_SCANS&)

To create a channel scan of non sequential channels with independent gain and unipolar/bipolar
settings, channel parameters must be passed to wbkSetScan.

ret% = VBwbkSetScan%(chan%(), gains%(), polarities%(), CHANS%)

This command sets the pre- and post-trigger sample frequencies.

ret% = VBwbkSetFreq%(PRE_FREQ#, POST_FREQ#)

The following line sets up a simple analog trigger using channel 1 as the trigger source. The scan is set
to trigger at 2 V.

ret% = VBwbkSetTrigAnalog%(1, WgcX1%, 1, WctRisingEdge%, 2!, .1)

This command arms the system to acquire data. Since pre-trigger scans are to be collected, scans will
be immediately available for transfer into the PC's memory.

ret% = VBwbkArm%()

When pre-trigger scans are included in the acquisition, scans begin to be acquired the moment the
system is armed. Scans will continue to be acquired until the trigger is satisfied and the post-trigger is
complete. Your application program must transfer the acquired data into a buffer in the PC as it is
collected. Until the trigger occurs, your application must be prepared to accept data continuously,
potentially far in excess of the sum of the specified pre-trigger and post-trigger scan counts. This is
best accomplished by setting up a background transfer in cycle mode which will automatically transfer
the scans as they are collected and wrap the buffer as it becomes full. The following line sets up a
background transfer of the acquired scans into buf. Cycle mode is turned on, allowing the buffer to
wrap around as it becomes full.

ret% = VBwbkBufferTransfer%(buf%(0), BLOCK%, 1, 0, 0, active%, retCount&)

The following lines monitor the background operation, waiting for the acquisition to be complete.

Print "Waiting for trigger."

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-10 WaveBook User’s Manual

While retCount& = 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
Wend
Print "Triggered. Transfer in progress."
While active% 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
Wend
Print "Acquisition complete:"; retCount&; "scans acquired."
Print

The following line unpacks the data so that each sample occupies an integer.

ret% = VBwbkBufferUnpack%(buf%(0), buf%(0), BLOCK%, CHANS%, retCount)

Since the buffer has potentially wrapped around, the earliest data is not at the beginning of the buffer.
The following line reorganizes the buffer so that the 1st pre-trigger scan occupies the 1st buffer
location and the last post-trigger scan occupies the last buffer location.

ret% = VBwbkBufferRotate%(buf%(0), BLOCK%, CHANS%, retCount)

The following lines print the acquired data.

Print "Pre-trigger data acquired:"
For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data:";
 For j% = 0 To PRE_SCANS& - 1
 Print Tab(j% * 7 + 17); buf%(j% * CHANS% + i%);
 Next j%
 Print
Next i%
Print
Print "Post-trigger data acquired:"
For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data:";
 For j% = PRE_SCANS& To BLOCK% - 1
 Print Tab((j% PRE_SCANS&) * 7 + 17); buf%(j% * CHANS% + i%);
 Next j%
 Print
Next i%

Buffer Management
The following excerpts are from the example program ADC7_CLICK found in the WaveBook
directory of your hard drive. This example demonstrates using double buffering in the background
mode, so that data can be read into one buffer while the another buffer can be processed in the
foreground.

Constants and buffers are defined.

Const CHANS% = 8
Const SCANS& = 20000
Const BLOCK% = 1000
Const FREQ# = 5000#

ReDim buf0%(CHANS% * BLOCK%)
ReDim buf1%(CHANS% * BLOCK%)

Dim i%, j%
Dim active%
Dim retCount&
Dim tmpActive%
Dim tmpRetCount&
Dim ret%
ReDim totals&(CHANS%)
Dim whichBuf%

The error handler is set up.

ret% = VBwbkSetErrHandler%(100)
On Error GoTo ErrorHandlerADC7

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-11

The following command initializes the WaveBook and puts it online. LPT1 specifies the port number
which the WaveBook is connected to and 7 is the interrupt level used.

ret% = VBwbkInit%(LPT1%, IRQ7%)

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post- trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)

The following command defines the channels in a scan. The 1st and 2nd arguments define the start and
end channels of the scan. Unlike the command wbkSetScan, this command does not allow a separate
gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the scan in a
random order.

ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)

This command sets the pre- and post-trigger sample frequencies. Since this application does not
collect pre-trigger scans, the 1st argument is ignored.

ret% = VBwbkSetFreq%(1#, FREQ#)

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

ret% = VBwbkArm%()

The next line triggers the system for data collection. When the trigger is satisfied, data immediately
starts flowing into the WaveBook's internal buffer. This data must be transferred to the PC before the
internal buffer overflows. If a background acquisition is configured, the data will automatically be
transferred into the allocated PC buffer. If a foreground data transfer is desired, this transfer to PC
memory must keep up with the acquisition rate to avoid a WaveBook buffer overrun.

ret% = VBwbkSoftTrig%()

Start the data transfer into the first buffer

ret% = VBwbkBufferTransfer%(buf0%(0), BLOCK%, 0, 0, 0, tmpActive%, tmpRetCount&)
whichBuf% = 0

The contents of the two buffers are swapped. The loop continues until the acquisition completes or the
buffer fills.

Do
 ' Swap the buffer selector, whichBuf selects the transfer buffer
 If whichBuf% = 1 Then whichBuf% = 0 Else whichBuf% = 1

Wait for the acquisition to go inactive or the buffer to be filled.

 Do
 ret% = VBwbkGetBackStat(active%, retCount&)
 Loop While ((active% 0) And (retCount& BLOCK%))

If the previous acquisition is still active, another transfer into the next buffer begins.

 If (active% 0) Then
 If whichBuf% = 0 Then
 ret% = VBwbkBufferTransfer(buf0%(0), BLOCK%, 0, 0, 0, tmpActive%,
tmpRetCount&)
 Else

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-12 WaveBook User’s Manual

 ret% = VBwbkBufferTransfer(buf1%(0), BLOCK%, 0, 0, 0, tmpActive%,
tmpRetCount&)
 End If
 End If

The following commands average the data in the process buffer and print the results.

 If (retCount& 0) Then
 ' Average the readings in the process buffer and print the results
 For j% = 0 To CHANS% - 1
 totals&(j%) = 0
 Next j%
 For i% = 0 To retCount& - 1
 For j% = 0 To CHANS% - 1
 If whichBuf% = 0 Then
 totals&(j%) = totals&(j%) + buf1%(i% * CHANS% + j%)
 Else
 totals&(j%) = totals&(j%) + buf0%(i% * CHANS% + j%)
 End If
 Next j%
 Next i%
 Print "Averages:";
 For j% = 0 To CHANS% - 1
 Print Tab(j% * 7 + 17); Format$((5# / 32768#) * totals&(j%) / retCount&,
"#0.000");
 Next j%
 Print
 End If
Loop While (active% 0)

The WaveBook is taken offline and reset.

'Close and exit
ret% = VBwbkClose()

Direct-to-Disk
The following excerpts are from the example program ADC8_CLICK found in the WaveBook
directory of your hard drive. This example reads multiple scans from multiple channels and writes the
data directly to a disk file.

Constants and buffers are defined.
Const CHANS% = 2
Const SCANS& = 100000
Const FREQ# = 10000#
Const BLOCK% = 2000 ' CHANS% * BLOCK% must be a multiple of 4

ReDim buf%(CHANS% * BLOCK%)

Dim i%, j%
Dim active%
Dim retCount&
Dim ret%
Dim fileHandle%
Dim byteCount%, wordCount%, sampleCount%, scanCount%
Dim termChar$
Dim voltage!

Set error handler.

ret% = VBwbkSetErrHandler%(100)
On Error GoTo ErrorHandlerADC8

The following command initializes the WaveBook and puts it online. LPT1 specifies the port number
which the WaveBook is connected to and 7 is the interrupt level used.

ret% = VBwbkInit%(LPT1%, IRQ7%)

Enable data packing

ret% = VBwbkSetDataPacking%(1)

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-13

Mode, the 1st argument, defines the way in which the WaveBook reacts to a trigger. The definition
WamNShot specifies that an entire acquisition be performed on every trigger until the system is
disarmed. An acquisition is defined as a specified number of pre- and post- trigger scans sampled at a
specified timebase. The 2nd and 3rd arguments define the number of pre- and post-trigger scans,
respectively.

ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)

The following command defines the channels in a scan. The 1st and 2nd arguments define the start and
end channels of the scan. Unlike the command wbkSetScan, this command does not allow a separate
gain and unipolar/bipolar setting per channel, nor does it allow channels to be added to the scan in a
random order.

ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)

This command sets the pre- and post-trigger sample frequencies. Since this application does not collect
pre-trigger scans, the 1st argument is ignored.

ret% = VBwbkSetFreq%(1#, FREQ#)

The following line sets the trigger source to Software. This trigger is satisfied by the execution of the
command wbkSoftTrig. The 2nd argument is a voltage level used when the trigger source is an analog
channel. In this case, the voltage level argument is ignored.

ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)

This command arms the system to acquire data. For the present configuration, the data will not be
collected until the software trigger has been satisfied by the execution of the wbkSoftTrig command.

ret% = VBwbkArm%()

The following command creates a filename ADCEX8.BIN for the file that will hold the data. No pre-
write is used.

ret% = VBwbkSetDiskFile%("adcex8.bin", WdfWriteFile%, 0)

Start reading data in the background mode with cycle mode on and updateSingle off

ret% = VBwbkBufferTransfer%(buf%(0), BLOCK%, 1, 0, 0, active%, retCount&)

The next line triggers the system for data collection.

ret% = VBwbkSoftTrig%()

The following commands monitor the progress of the background transfer. The program prints a
running total of the number of scans acquired.

Print "Waiting for trigger."
While retCount& = 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
Wend
Print "Triggered. Transfer in progress."
While active% 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
Wend

Once the transfer has finished, a completion message is printed.

Print "Acquisition complete:"; retCount&; "scans acquired."

The WaveBook is taken off line and reset.

ret% = VBwbkClose%()

After the acquisition has finished, the collected binary data will be converted to ascii format for display
as a text file. The process starts with reading binary data from the ADCEX8.BIN file. If the file
cannot be opened, an error is issued

Print "Converting adcex8.bin to adcex8.txt"

' Open the binary input file

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-14 WaveBook User’s Manual

Open "adcex8.bin" For Input As 1
fileHandle% = FileAttr(1, 2)
Next, a text file is created to hold the converted data.
 ' Open the text output file
Open "adcex8.txt" For Output As 2

The binary data is converted to ascii and transferred to the text file. Errors are generated if the program
cannot read from ADCEX8.BIN or write to ADCEX8.TXT.

Do
 ' Convert BLOCK unpacked scans to packed bytes
 scanCount% = BLOCK%
 sampleCount% = scanCount% * CHANS%
 wordCount% = sampleCount% * 3 / 4
 byteCount% = 2 * wordCount%

Read the packed bytes from the input file and get the number of bytes actually read

 byteCount% = fRead%(fileHandle%, buf%(0), byteCount%)

Convert the number of bytes read from packed bytes to unpacked scans

 wordCount% = byteCount% / 2
 sampleCount% = wordCount% * 4 / 3
 scanCount% = sampleCount% / CHANS%

Unpack the packed data using the same buffer. This command can be called even if the WaveBook if
not online or connected.

 ret% = VBwbkBufferUnpack%(buf%(0), buf%(0), BLOCK%, CHANS%, scanCount%)

The unpacked data is next written to the text file. The voltage values are then calculated and printed.
The program prints the "." character to indicate that it is still active.

 For i% = 0 To scanCount% - 1
 For j% = 0 To CHANS% - 1
 ' Send a tab between channels and a newline after each scan
 If (j% CHANS% 1) Then
 termChar$ = Chr$(9)
 Else
 termChar$ = Chr$(13) + Chr$(10)
 End If
 ' calculate and write out the voltage value
 voltage! = buf%(i% * CHANS% + j%) * 5! / 32768!
 Print #2, Format$(voltage!, ".000") + termChar$;
 Next j%
 Next i%

 ' Print something so that the program doesn't appear locked
 Print ".";
Loop While (byteCount% 0) ' A byteCount of 0 indicates end of file

Finally, the files are closed and a completion message printed.

Close 1
Close 2
Print "complete."

Sample Programs

Sub ADC1_Click ()
Sub ADC1_Click ()
 ' This example demonstrates the use of the WaveBook's one-step
 ' acquisition functions and user error handling.
 ' Function used:
 ' VBwbkRd(chan, sample, gain, polarity)
 ' VBwbkRdN(chan, buf, count, trigger, level, freq, gain, polarity)
 ' VBwbkRdScan(startChan, endChan, buf, gain, polarity)
 ' VBwbkRdScanN(startChan, endChan, buf, count, trigger, level, freq, gain,

polarity)
 ' VBwbkSetErrHandler(errNum)

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-15

 ' VBwbkInit(lptPort, lptIntr)
 ' VBwbkClose()
 Const FREQ# = 1000#
 Const GAIN% = WgcX1%
 Const BIPOLAR% = 1
 Const SCANS& = 9
 Const CHANS% = 8
 ReDim buf%(SCANS& * CHANS%)
 Dim i%, j%
 Dim sample%
 Dim ret%
 Cls
 Print "ADC1"
 Print
 ' Set error handler and initialize WaveBook
 ret% = VBwbkSetErrHandler%(100)
 On Error GoTo ErrorHandlerADC1
 ret% = VBwbkInit%(LPT1%, IRQ7%)
 ' Get a single sample from a single channel
 ret% = VBwbkRd%(1, sample%, GAIN%, BIPOLAR%)
 ' Print result
 Print "Result of Rd: "; sample%
 Print
 ' Get multiple samples from a single channel, triggered by a software trigger
 ret% = VBwbkRdN%(1, buf%(0), SCANS&, WtsSoftware%, 0!, FREQ#, GAIN%, BIPOLAR%)
 ' Print results
 Print "Results of RdN:"
 Print "Channel 1 Data: ";
 For i% = 0 To SCANS& - 1
 Print Tab(i% * 7 + 17); buf%(i%);
 Next i%
 Print
 Print
 ' Get a single sample from multiple channels
 ret% = VBwbkRdScan%(1, CHANS%, buf%(0), GAIN%, BIPOLAR%)
 ' Print results
 Print "Results of RdScan:"
 For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data: "; buf%(i%)
 Next i%
 Print
 ' Get multiple samples from multiple channels, triggered by a software trigger
 ret% = VBwbkRdScanN%(1, CHANS%, buf%(0), SCANS&, WtsSoftware%, 0!, FREQ#, GAIN%,
BIPOLAR%)
 ' Print results
 Print "Results of RdScanN:"
 For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data: ";
 For j% = 0 To SCANS& - 1
 Print Tab(j% * 7 + 17); buf%(j% * CHANS% + i%);
 Next j%
 Print
 Next i%
 'Close and exit
 ret% = VBwbkClose%()
Exit Sub
ErrorHandlerADC1:
 Dim ErrorString$
 ErrorString$ = "ERROR in ADC1"
 ErrorString$ = ErrorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then ErrorString$ = ErrorString$ & Chr(10) & "WaveBook Error : " +
Hex$(wbkErrno%)
 MsgBox ErrorString$, , "Error!"
 End
End Sub

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-16 WaveBook User’s Manual

Sub ADC2_Click ()
Sub ADC2_Click ()
 ' This example demonstrates the use of WaveBook's custom acquistion functions.
 ' Function used:
 ' VBwbkSetAcq(mode, preTrigCount, postTrigCount)
 ' VBwbkSetMux(startChan, endChan, gain, polarity)
 ' VBwbkSetFreq(preTrigFreq, postTrigFreq)
 ' VBwbkGetFreq(preTrigFreq, postTrigFreq)
 ' VBwbkGetPeriod(preTrigPeriod, postTrigPeriod)
 ' VBwbkSetTrigHardware(source, level)
 ' VBwbkArm()
 ' VBwbkSoftTrig()
 ' VBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,

retCount)
 ' VBwbkSetErrHandler(errNum)
 ' VBwbkInit(lptPort, lptIntr)
 ' VBwbkClose()
 Const CHANS% = 8 ' number of channels in scan
 Const SCANS& = 10 ' number of scans
 Const BLOCK% = 6 ' number scans reading for one time
 Const FREQ# = 5# ' postTrig scan rates in Hz
 ReDim buf%(BLOCK% * CHANS%)
 Dim i%, j%
 Dim active%
 Dim retCount&
 Dim preTrigFreq#, postTrigFreq#
 Dim preTrigPeriod#, postTrigPeriod#
 Dim ret%
 Cls
 Print "ADC2"
 Print
 ' Set error handler and initialize WaveBook
 ret% = VBwbkSetErrHandler%(100)
 On Error GoTo ErrorHandlerADC2
 ret% = VBwbkInit%(LPT1%, IRQ7%)
 ' Set the acquisition to NShot on trigger and the post-trigger scan count
 ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)
 ' Set the scan configuration
 ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)
 ' Set the post-trigger scan rates
 ret% = VBwbkSetFreq%(1#, FREQ#)
 ' Get the pre-trigger and post-trigger scan rates in frequency and period
 ret% = VBwbkGetFreq%(preTrigFreq#, postTrigFreq#)
 Print "Result of GetFreq: pre-trigger="; preTrigFreq#; "Hz, post-trigger=";
postTrigFreq#; "Hz"
 ret% = VBwbkGetPeriod%(preTrigPeriod#, postTrigPeriod#)
 Print "Result of GetPeriod: pre-trigger="; preTrigPeriod#; "ns, post-trigger=";
postTrigPeriod#; "ns"
 Print
 ' Set the trigger source to a software trigger command
 ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)
 ' Arm the acquisition
 ret% = VBwbkArm%()
 ' Issue a software trigger command to the hardware
 ret% = VBwbkSoftTrig%()
 Do
 ' Read BLOCK scans from the hardware with cycle mode off,
 ' updateSingle on and foreground enabled
 ret% = VBwbkBufferTransfer%(buf%(0), BLOCK%, 0, 1, 1, active%, retCount&)
 ' Print results
 Print "Result of BufferTransfer: retCount="; retCount&; " active="; active%
 For i% = 0 To retCount& - 1
 Print "Scan"; i% + 1; "Data:";
 For j% = 0 To CHANS% - 1
 Print Tab(j% * 7 + 17); buf%(i% * CHANS% + j%);
 Next j%
 Print
 Next i%
 Print
 Loop While active% 0
 'Close and exit
 ret% = VBwbkClose%()

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-17

Exit Sub
ErrorHandlerADC2:
 Dim ErrorString$
 ErrorString$ = "ERROR in ADC2"
 ErrorString$ = ErrorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then ErrorString$ = ErrorString$ & Chr(10) & "WaveBook Error : " +
Hex$(wbkErrno%)
 MsgBox ErrorString$, , "Error!"
 End
End Sub

Sub ADC3_Click ()
Sub ADC3_Click ()
 ' This example takes multiple scans from hardware using a software trigger.
 ' Each scan includes the high speed digital I/O port (channel 0) and
 ' two analog channels: 5 and 8.
 ' Function used:
 ' VBwbkSetAcq(mode, preTrigCount, postTrigCount)
 ' VBwbkSetScan(chans, gains, polarities, count)
 ' VBwbkSetFreq(preTrigFreq, postTrigFreq)
 ' VBwbkSetTrigHardware(source, level)
 ' VBwbkArm()
 ' VBwbkSoftTrig()
 ' VBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,

retCount)
 ' VBwbkGetDriverVersion(version)
 ' VBwbkSetErrHandler(errNum)
 ' VBwbkInit(lptPort, lptIntr)
 ' VBwbkClose()
 Const FREQ# = 5
 Const SCANS& = 10
 Const CHANS% = 3
 ReDim buf%(SCANS& * CHANS%)
 Dim i%, j%
 Dim active%
 Dim retCount&
 Dim version%
 ReDim chan%(CHANS%)
 ReDim gains%(CHANS%), polarities%(CHANS%)
 Dim ret%
 Cls
 Print "ADC3"
 Print
 ' Scan sequence definition
 chan%(0) = 0 ' high speed digital channel
 chan%(1) = 5 ' analog channel 5
 chan%(2) = 8 ' analog channel 8
 ' Channel gains and polarities setting
 For i% = 0 To CHANS% - 1
 gains%(i%) = WgcX1% ' unity gain
 polarities%(i%) = 1 ' bipolar
 Next i%
 ' Get driver version
 ret% = VBwbkGetDriverVersion%(version%)
 Print "Using driver version: "; Format$(.01 * version, "0.00")
 Print
 ' Set error handler and initialize WaveBook
 ret% = VBwbkSetErrHandler%(100)
 On Error GoTo ErrorHandlerADC3
 ret% = VBwbkInit%(LPT1%, IRQ7%)
 ' Set the acquisition to NShot on trigger and the post-trigger scan count
 ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)
 ' Set scan configuration
 ret% = VBwbkSetScan%(chan%(), gains%(), polarities%(), CHANS%)
 ' Set the post-trigger scan rates
 ret% = VBwbkSetFreq%(1#, FREQ#)
 ' Set the trigger source to a software trigger command
 ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)
 ' Arm the acquisition
 ret% = VBwbkArm%()
 ' Issue a software trigger command to the hardware
 ret% = VBwbkSoftTrig%()
 ' Read SCANS& number of scans from the hardware

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-18 WaveBook User’s Manual

 ' with cycle mode off, updateSingle on and foreground enabled
 ret% = VBwbkBufferTransfer%(buf%(0), SCANS&, 0, 1, 1, active%, retCount&)
 ' Print results
 Print "Results of BufferTransfer:"
 Print " Digital_ch_0 Analog_ch_5 Analog_ch_8"
 For i% = 0 To retCount& - 1
 ' shift the upper (valid) 8 bits of the digital input to the lower 8 bits
 buf%(i% * CHANS%) = ((buf%(i% * CHANS%) And &HFF00) \ 256) And &HFF
 Print "Scan"; i% + 1; "Data:";
 For j% = 0 To CHANS% - 1
 Print Tab(j% * 14 + 17); buf%(i% * CHANS% + j%);
 Next j%
 Print
 Next i%

 'Close and exit
 ret% = VBwbkClose%()
Exit Sub
ErrorHandlerADC3:
 Dim ErrorString$
 ErrorString$ = "ERROR in ADC3"
 ErrorString$ = ErrorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then ErrorString$ = ErrorString$ & Chr(10) & "WaveBook Error : " +
Hex$(wbkErrno%)
 MsgBox ErrorString$, , "Error!"
 End
End Sub

Sub ADC4_Click ()
Sub ADC4_Click ()
 ' This example reads scans of multiple channels in the background mode
 ' and uses a software trigger to start the acquisition.
 ' Function used:
 ' VBwbkSetAcq(mode, preTrigCount, postTrigCount)
 ' VBwbkSetFreq(preTrigFreq, postTrigFreq)
 ' VBwbkSetMux(startChan, endChan, gain, polarity)
 ' VBwbkSetTrigHardware(source, level)
 ' VBwbkArm()
 ' VBwbkSoftTrig()
 ' VBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,

retCount)
 ' VBwbkGetBackStat(active, retCount)
 ' VBwbkSetErrHandler(errNum)
 ' VBwbkInit(lptPort, lptIntr)
 ' VBwbkClose()
 Const CHANS% = 8
 Const SCANS& = 9
 Const FREQ# = 2
 ReDim buf%(SCANS& * CHANS%)
 Dim i%, j%
 Dim active%
 Dim retCount&
 Dim ret%
 Cls
 Print "ADC4"
 Print
 ' Set error handler and initialize WaveBook
 ret% = VBwbkSetErrHandler%(100)
 On Error GoTo ErrorHandlerADC4
 ret% = VBwbkInit%(LPT1%, IRQ7%)
 ' Set the acquisition to NShot on trigger and the post-trigger scan count
 ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)
 ' Set scan's configuration
 ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)
 ' Set the post-trigger scan rates
 ret% = VBwbkSetFreq%(1#, FREQ#)
 ' Set the trigger source to a software trigger command
 ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)
 ' Arm the acquisition
 ret% = VBwbkArm%()
 ' Start reading data in the background mode with cycle mode off
 ' and updateSingle on
 ret% = VBwbkBufferTransfer%(buf%(0), SCANS&, 0, 1, 0, active%, retCount&)

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-19

 ' Issue a software trigger command to the hardware
 ret% = VBwbkSoftTrig%()
 ' Monitor the progress of the background transfer
 Print "Waiting for trigger."
 While retCount& = 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
 Wend
 Print "Triggered. Transfer in progress."
 While active% 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
 Wend
 Print "Acquisition complete:"; retCount&; "scans acquired."
 Print
 ' Print results
 Print "Data acquired:"
 For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data:";
 For j% = 0 To SCANS& - 1
 Print Tab(j% * 7 + 17); buf%(j% * CHANS% + i%);
 Next j%
 Print
 Next i%
 ' Close and Exit
 ret% = VBwbkClose%()
Exit Sub
ErrorHandlerADC4:
 Dim ErrorString$
 ErrorString$ = "ERROR in ADC4"
 ErrorString$ = ErrorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then ErrorString$ = ErrorString$ & Chr(10) & "WaveBook Error : " +
Hex$(wbkErrno%)
 MsgBox ErrorString$, , "Error!"
 End
End Sub

Sub ADC5_Click ()
Sub ADC5_Click ()
 ' This example takes multiple scans from hardware using a complex analog
 ' trigger. The acquisition will start on a rising-edge of channel 1 at
 ' 2 volts OR a falling edge on channel 2 at 3 volts.
 ' Function used:
 ' VBwbkSetAcq(mode, preTrigCount, postTrigCount)
 ' VBwbkSetMux(startChan, endChan, gain, polarity)
 ' VBwbkSetFreq(preTrigFreq, postTrigFreq)
 ' VBwbkSetTrigComplex(chans, gains, polarities, rising, levels, hysteresis,

count, opstr)
 ' VBwbkArm()
 ' VBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,

retCount)
 ' VBwbkSetErrHandler(errNum)
 ' VBwbkInit(lptPort, lptIntr)
 ' VBwbkClose()
 Const FREQ# = 1000
 Const SCANS& = 9
 Const CHANS% = 3
 Const NUM_TRIG% = 2
 ReDim buf%(SCANS& * CHANS%)
 Dim i%, j%
 Dim active%
 Dim retCount&
 ReDim chan_tr%(NUM_TRIG%)
 ReDim gains_tr%(NUM_TRIG%), polarity_tr%(NUM_TRIG%)
 ReDim rising%(NUM_TRIG%)
 ReDim levels!(NUM_TRIG%), hysteresis!(NUM_TRIG%)
 Dim opstr$
 Dim ret%
 ' Initialize the complex trigger arrays for a rising-edge on channel 1
 ' at 2 volts OR a falling-edge on channel 2 at 3 volts
 chan_tr%(0) = 1
 gains_tr%(0) = WgcX1%
 polarity_tr%(0) = 1
 rising%(0) = WctRisingEdge%
 levels!(0) = 2
 hysteresis!(0) = .1

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-20 WaveBook User’s Manual

 chan_tr%(1) = 2
 gains_tr%(1) = WgcX1%
 polarity_tr%(1) = 1
 rising%(1) = WctFallingEdge%
 levels!(1) = 3
 hysteresis!(1) = .1
 opstr$ = "+"
 Cls
 Print "ADC4"
 Print
 ' Set error handler and initialize WaveBook
 ret% = VBwbkSetErrHandler%(100)
 On Error GoTo ErrorHandlerADC5
 ret% = VBwbkInit%(LPT1%, IRQ7%)
 ' Set the acquisition to NShot on trigger and the post-trigger scan count
 ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)
 ' Set the scan configuration
 ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)
 ' Set the post-trigger scan rates
 ret% = VBwbkSetFreq%(1#, FREQ#)
 ' Set a complex trigger at channels 1 and 2
 Print "Waiting for complex trigger of channels 1 or 2..."
 Print
 ret% = VBwbkSetTrigComplex%(chan_tr%(), gains_tr%(), polarity_tr%(), rising%(),
levels!(), hysteresis!(), NUM_TRIG%, opstr$)
 ' Arm the acquisition
 ret% = VBwbkArm%()
 ' Read SCANS& number of scans from the hardware
 ' with cycle mode off, updateSingle on and foreground enabled
 ret% = VBwbkBufferTransfer%(buf%(0), SCANS&, 0, 1, 1, active%, retCount&)
 ' Print results
 Print "Results of BufferTransfer:"
 For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data:";
 For j% = 0 To SCANS& - 1
 Print Tab(j% * 7 + 17); buf%(j% * CHANS% + i%);
 Next j%
 Print
 Next i%
 'Close and exit
 ret% = VBwbkClose%()
Exit Sub
ErrorHandlerADC5:
 Dim ErrorString$
 ErrorString$ = "ERROR in ADC5"
 ErrorString$ = ErrorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then ErrorString$ = ErrorString$ & Chr(10) & "WaveBook Error : " +
Hex$(wbkErrno%)
 MsgBox ErrorString$, , "Error!"
 End
End Sub

Sub ADC6_Click ()
Sub ADC6_Click ()
 ' This example demonstrates an acquisition made up of pre-trigger and
 ' post-trigger scans from multiple channels using a DSP-based analog
 ' trigger. It also uses data packing and rotating.
 ' Function used:
 ' VBwbkSetAcq(mode, preTrigCount, postTrigCount)
 ' VBwbkSetFreq(preTrigFreq, postTrigFreq)
 ' VBwbkSetScan(chans, gains, polarities, chanCount)
 ' VBwbkSetTrigAnalog(chan, gain, polarity, rising, level, opstr)
 ' VBwbkArm()
 ' VBwbkSoftTrig()
 ' VBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,

retCount)
 ' VBwbkBufferUnpack(packedBuf, unpackedBuf, scanCount, chanCount, retCount)
 ' VBwbkBufferRotate(buf, scanCount, chanCount, retCount)
 ' VBwbkGetBackStat(active, retCount)
 ' VBwbkSetErrHandler(errNum)
 ' VBwbkInit(lptPort, lptIntr)
 ' VBwbkClose()

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-21

 Const CHANS% = 4
 Const PRE_SCANS& = 5
 Const POST_SCANS& = 9
 Const PRE_FREQ# = 100#
 Const POST_FREQ# = 200#
 Const BLOCK% = (PRE_SCANS& + POST_SCANS&)
 ReDim buf%(BLOCK% * CHANS%)
 Dim i%, j%
 Dim active%
 Dim retCount&
 ReDim chan%(CHANS%)
 ReDim gains%(CHANS%), polarities%(CHANS%)
 Dim ret%
 Cls
 Print "ADC6"
 Print
 ' Scan definition
 chan%(0) = 1 ' channel numbers
 chan%(1) = 3
 chan%(2) = 5
 chan%(3) = 7
 For i% = 0 To CHANS% - 1
 gains%(i%) = WgcX1% ' unity gain
 polarities%(i%) = 1 ' bipolar
 Next i%
 ' Set error handler and initialize WaveBook
 ret% = VBwbkSetErrHandler%(100)
 On Error GoTo ErrorHandlerADC6
 ret% = VBwbkInit%(LPT1%, IRQ7%)
 ' Enable data packing
 ret% = VBwbkSetDataPacking%(1)
 ' Set the acquisition for pre/post-trigger mode and the scan counts
 ret% = VBwbkSetAcq%(WamPrePost%, PRE_SCANS&, POST_SCANS&)
 ' Set the scan configuration
 ret% = VBwbkSetScan%(chan%(), gains%(), polarities%(), CHANS%)
 ' Set the pre-trigger and post-trigger scan rates
 ret% = VBwbkSetFreq%(PRE_FREQ#, POST_FREQ#)
 ' Set the trigger source to an analog trigger on channel 1 at 2 volts
 ret% = VBwbkSetTrigAnalog%(1, WgcX1%, 1, WctRisingEdge%, 2!, .1)
 ' Arm the acquisition
 ret% = VBwbkArm%()
 ' Start reading data in the background mode with cycle mode on
 ' and updateSingle off
 ret% = VBwbkBufferTransfer%(buf%(0), BLOCK%, 1, 0, 0, active%, retCount&)
 ' Monitor the progress of the background transfer
 Print "Waiting for trigger."
 While retCount& = 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
 Wend
 Print "Triggered. Transfer in progress."
 While active% 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
 Wend
 Print "Acquisition complete:"; retCount&; "scans acquired."
 Print
 ' Unpack the packed data using the same buffer
 ret% = VBwbkBufferUnpack%(buf%(0), buf%(0), BLOCK%, CHANS%, retCount)
 ' Rotate the unpacked data so that the earliest data starts at the
 ' beginning of the buffer and the latest is at the end
 ret% = VBwbkBufferRotate%(buf%(0), BLOCK%, CHANS%, retCount)
 ' Print results
 Print "Pre-trigger data acquired:"
 For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data:";
 For j% = 0 To PRE_SCANS& - 1
 Print Tab(j% * 7 + 17); buf%(j% * CHANS% + i%);
 Next j%
 Print
 Next i%
 Print
 Print "Post-trigger data acquired:"
 For i% = 0 To CHANS% - 1
 Print "Channel"; i% + 1; "Data:";
 For j% = PRE_SCANS& To BLOCK% - 1
 Print Tab((j% - PRE_SCANS&) * 7 + 17); buf%(j% * CHANS% + i%);

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-22 WaveBook User’s Manual

 Next j%
 Print
 Next i%
 ' Close and Exit
 ret% = VBwbkClose%()
Exit Sub
ErrorHandlerADC6:
 Dim ErrorString$
 ErrorString$ = "ERROR in ADC6"
 ErrorString$ = ErrorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then ErrorString$ = ErrorString$ & Chr(10) & "WaveBook Error : " +
Hex$(wbkErrno%)
 MsgBox ErrorString$, , "Error!"
 End
End Sub

Sub ADC7_Click ()
Sub ADC7_Click ()
 ' This example demonstrates using double buffering in the background
 ' mode, so that data can be read into one buffer while the another buffer
 ' can be processed in the foreground.
 ' Functions used:
 ' VBwbkSetAcq(mode, preTrigCount, postTrigCount)
 ' VBwbkSetMux(startChan, endChan, gain, polarity)
 ' VBwbkSetFreq(preTrigFreq, postTrigFreq)
 ' VBwbkSetTrigHardware(source, level)
 ' VBwbkArm()
 ' VBwbkSoftTrig()
 ' VBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,

retCount)
 ' VBwbkGetBackStat(active, retCount)
 ' VBwbkSetErrHandler(errNum)
 ' VBwbkInit(lptPort, lptIntr)
 ' VBwbkClose()
 Const CHANS% = 8
 Const SCANS& = 20000
 Const BLOCK% = 1000
 Const FREQ# = 5000#
 ReDim buf0%(CHANS% * BLOCK%)
 ReDim buf1%(CHANS% * BLOCK%)
 Dim i%, j%
 Dim active%
 Dim retCount&
 Dim tmpActive%
 Dim tmpRetCount&
 Dim ret%
 ReDim totals&(CHANS%)
 Dim whichBuf%
 Cls
 Print "ADC7"
 Print
 ' Set error handler and initialize WaveBook
 ret% = VBwbkSetErrHandler%(100)
 On Error GoTo ErrorHandlerADC7
 ret% = VBwbkInit%(LPT1%, IRQ7%)
 ' Set the acquisition to NShot on trigger and the post-trigger scan count
 ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)
 ' Set the scan configuration
 ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)
 ' Set the post-trigger scan rates
 ret% = VBwbkSetFreq%(1#, FREQ#)
 ' Set the trigger source to a software trigger command
 ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)
 ' Arm the acquisition
 ret% = VBwbkArm%()
 ' Issue a software trigger command to the hardware
 ret% = VBwbkSoftTrig%()
 ' Start reading data into the first buffer
 ret% = VBwbkBufferTransfer%(buf0%(0), BLOCK%, 0, 0, 0, tmpActive%, tmpRetCount&)
 whichBuf% = 0
 Do
 ' Swap the buffer selector, whichBuf selects the transfer buffer
 If whichBuf% = 1 Then whichBuf% = 0 Else whichBuf% = 1

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-23

 ' Wait for the acquisition to go inactive or the buffer to be filled
 Do
 ret% = VBwbkGetBackStat(active%, retCount&)
 Loop While ((active% 0) And (retCount& BLOCK%))
 ' If the previous acquisition is still active, start another transfer
 ' into the next buffer
 If (active% 0) Then
 If whichBuf% = 0 Then
 ret% = VBwbkBufferTransfer(buf0%(0), BLOCK%, 0, 0, 0, tmpActive%,

tmpRetCount&)
 Else
 ret% = VBwbkBufferTransfer(buf1%(0), BLOCK%, 0, 0, 0, tmpActive%,

tmpRetCount&)
 End If
 End If
 ' Process the data into the process buffer
 If (retCount& 0) Then
 ' Average the readings in the process buffer and print the results
 For j% = 0 To CHANS% - 1
 totals&(j%) = 0
 Next j%
 For i% = 0 To retCount& - 1
 For j% = 0 To CHANS% - 1
 If whichBuf% = 0 Then
 totals&(j%) = totals&(j%) + buf1%(i% * CHANS% + j%)
 Else
 totals&(j%) = totals&(j%) + buf0%(i% * CHANS% + j%)
 End If
 Next j%
 Next i%
 Print "Averages:";
 For j% = 0 To CHANS% - 1
 Print Tab(j% * 7 + 17); Format$((5# / 32768#) * totals&(j%) / retCount&,
"#0.000");
 Next j%
 Print
 End If
 Loop While (active% 0)

 'Close and exit
 ret% = VBwbkClose()
Exit Sub
ErrorHandlerADC7:
 Dim ErrorString$
 ErrorString$ = "ERROR in ADC7"
 ErrorString$ = ErrorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then ErrorString$ = ErrorString$ & Chr(10) & "WaveBook Error : " +
Hex$(wbkErrno%)
 MsgBox ErrorString$, , "Error!"
 End
End Sub

Sub ADC8_Click ()
Sub ADC8_Click ()
 ' This example reads multiple scans from multiple channels and writes the
 ' data directly a disk file in a packed format.
 ' Function used:
 ' VBwbkSetAcq(mode, preTrigCount, postTrigCount)
 ' VBwbkSetFreq(preTrigFreq, postTrigFreq)
 ' VBwbkSetMux(chans, gains, polarities, chanCount)
 ' VBwbkSetTrigHardware(source, level)
 ' VBwbkArm()
 ' VBwbkSoftTrig()
 ' VBwbkBufferTransfer(buf, scanCount, cycle, updateSingle, foreground, active,

retCount)
 ' VBwbkGetBackStat(active, retCount)
 ' VBwbkBufferUnpack(packedBuf, unpackedBuf, scanCount, chanCount, retCount)
 ' VBwbkSetErrHandler(errNum)
 ' VBwbkInit(lptPort, lptIntr)
 ' VBwbkClose()
 Const CHANS% = 2
 Const SCANS& = 100000
 Const FREQ# = 10000#

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-24 WaveBook User’s Manual

 Const BLOCK% = 2000 ' CHANS% * BLOCK% must be a multiple of 4
 ReDim buf%(CHANS% * BLOCK%)
 Dim i%, j%
 Dim active%
 Dim retCount&
 Dim ret%
 Dim fileHandle%
 Dim byteCount%, wordCount%, sampleCount%, scanCount%
 Dim termChar$
 Dim voltage!
 Cls
 Print "ADC8"
 Print
 ' Set error handler and initialize WaveBook
 ret% = VBwbkSetErrHandler%(100)
 On Error GoTo ErrorHandlerADC8
 ret% = VBwbkInit%(LPT1%, IRQ7%)
 ' Enable data packing
 ret% = VBwbkSetDataPacking%(1)
 ' Set the acquisition to NShot on trigger and the post-trigger scan count
 ret% = VBwbkSetAcq%(WamNShot%, 0, SCANS&)
 ' Set the scan configuration
 ret% = VBwbkSetMux%(1, CHANS%, WgcX1%, 1)
 ' Set the post-trigger scan rate
 ret% = VBwbkSetFreq%(1#, FREQ#)
 ' Set the trigger source to a software trigger command
 ret% = VBwbkSetTrigHardware%(WtsSoftware%, 0!)
 ' Arm the acquisition
 ret% = VBwbkArm%()
 ' Set the direct-to-disk filename with no pre-write
 ret% = VBwbkSetDiskFile%("adcex8.bin", WdfWriteFile%, 0)
 ' Start reading data in the background mode with cycle mode on
 ' and updateSingle off
 ret% = VBwbkBufferTransfer%(buf%(0), BLOCK%, 1, 0, 0, active%, retCount&)
 ' Issue a software trigger command to the hardware
 ret% = VBwbkSoftTrig%()
 ' Monitor the progress of the background transfer
 Print "Waiting for trigger."
 While retCount& = 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
 Wend
 Print "Triggered. Transfer in progress."
 While active% 0
 ret% = VBwbkGetBackStat%(active%, retCount&)
 Wend
 Print "Acquisition complete:"; retCount&; "scans acquired."
 Print
 ' Close and Exit
 ret% = VBwbkClose%()
 ' Convert the binary file just read to a text file
 Print "Converting adcex8.bin to adcex8.txt"
 ' Open the binary input file
 Open "adcex8.bin" For Input As 1
 fileHandle% = FileAttr(1, 2)
 ' Open the text output file
 Open "adcex8.txt" For Output As 2
 Do
 ' Convert BLOCK unpacked scans to packed bytes
 scanCount% = BLOCK%
 sampleCount% = scanCount% * CHANS%
 wordCount% = sampleCount% * 3 / 4
 byteCount% = 2 * wordCount%
 ' Read the packed bytes from the input file and get the number
 ' of bytes actually read
 byteCount% = fRead%(fileHandle%, buf%(0), byteCount%)
 ' Convert the number of bytes read from packed bytes to unpacked scans
 wordCount% = byteCount% / 2
 sampleCount% = wordCount% * 4 / 3
 scanCount% = sampleCount% / CHANS%
 ' Unpack the packed data using the same buffer. This command
 ' can be called even if the WaveBook if not online or connected.
 ret% = VBwbkBufferUnpack%(buf%(0), buf%(0), BLOCK%, CHANS%, scanCount%)
 ' Write the scans read and unpacked to the text file
 For i% = 0 To scanCount% - 1
 For j% = 0 To CHANS% - 1

Chapter 9 Using WaveBook/512 with VB Subroutines Support

WaveBook User’s Manual 9-25

 ' Send a tab between channels and a newline after each scan
 If (j% CHANS% - 1) Then
 termChar$ = Chr$(9)
 Else
 termChar$ = Chr$(13) + Chr$(10)
 End If
 ' calculate and write out the voltage value
 voltage! = buf%(i% * CHANS% + j%) * 5! / 32768!
 Print #2, Format$(voltage!, ".000") + termChar$;
 Next j%
 Next i%
 ' Print something so that the program doesn't appear locked
 Print ".";
 Loop While (byteCount% 0) ' A byteCount of 0 indicates end-of-file
 ' Close the input and output files
 Close 1
 Close 2
 Print "complete."
Exit Sub
ErrorHandlerADC8:
 Dim ErrorString$
 ErrorString$ = "ERROR in ADC8"
 ErrorString$ = ErrorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then ErrorString$ = ErrorString$ & Chr(10) & "WaveBook Error : " +
Hex$(wbkErrno%)

 MsgBox ErrorString$, , "Error!"
 End
End Sub

Using WaveBook/512 with VB Subroutines Support Chapter 9

9-26 WaveBook User’s Manual

- Notes

Command Reference (Standard API) 10

WaveBook User’s Manual 10-1

Overview
The first part of this chapter describes the WaveBook/512 driver commands (this is the Standard API
and is not to be confused with the Enhanced API). The first table lists the commands by their function
types as defined in the driver header files. Then, the prototype commands are described in alphabetical
order as indexed below. At the end of the chapter (beginning on page 24), several reference tables
define parameters for: Parallel Port Protocols, LPT channels, IRQ Settings, Trigger Sources/Types,
Gain Codes, the API Error Codes, etc.

The WaveBook software commands are described on the following pages.

Function Description Page

Initialization and LPT Port Control
wbkInit Starts the session with the WaveBook by putting it on-line and

initializing its internal hardware.
10-12

wbkSelectPort Selects an initialized WaveBook/512. 10-14
wbkClose Ends the session with the currently selected WaveBook and

takes it off line.
10-5

wbkSetProtocol Sets the printer port communication protocol. 10-19
wbkSetDefaultProtocol Forces the use of a specific printer port protocol. 10-16
wbkGetProtocol Retrieves the current printer port protocol. 10-11
wbkGetDriverVersion Gets the version of the WaveBook software driver. 10-9

Hardware Interrogation
wbkGetChannelType Retrieves the type of chassis or option card attached to the

given channel.
10-8

wbkGetChannelCount Retrieves the number of channels supplied by the chassis that
includes the given channel.

10-7

wbkGetChannelInfo Retrieves various information stored in non-volatile memory of a
chassis.

10-8

wbkGetGainVal Retrieves the gain setting of the selected channel. 10-9

Calibration
wbkSetCalInput Sets the WaveBook to sample either the front-panel analog

inputs, or the 0, 5, or 0.5 volt calibration sources.
10-15

wbkSetCalTable Selects between the factory or user calibration tables. 10-15
wbkGetCalConstants Retrieves factory or user calibration constants. 10-7
wbkSetUserCalConstants Sets the user calibration table entry for the specified channel,

gain, and range.
10-22

wbkWriteUserCalConstants Writes the user calibrations entries for the chassis containing
the specified channel into the non-volatile memory.

10-23

One-Step Acquisition
wbkRd Takes one sample of a channel. 10-12
wbkRdScan Takes one sample of a range of channels. 10-13
wbkRdN Takes a number of samples of a channel. 10-12
wbkRdScanN Takes a number of samples of a range of channels. 10-13

Custom Acquisition — Scan Sequence
wbkSetScan Sets the scan sequence, with arbitrary channel number, gain,

and range settings.
10-19

wbkSetMux Sets the scan sequence to all the channels in a range, all with
the same gain and range settings.

10-18

wbkGetScan Retrieves the current scan sequence: the number of channels
and their channel numbers, gains, and ranges.

10-11

Custom Acquisition — Trigger
wbkSetTrigHardware Sets the trigger source to one of the high-speed trigger sources. 10-22
wbkSetTrigAnalog Sets the trigger source to any one of the analog input channels

in the system.
10-20

wbkSetTrigComplex Sets the trigger source to a combination of analog input
channels.

10-21

wbkSoftTrig Issues a trigger, regardless of the selected trigger source. 10-22

Custom Acquisition — Scan Count and Rate
wbkSetFreq Sets the scan frequency (in Hertz). 10-17

Command Reference (Standard API) Chapter 10

10-2 WaveBook User’s Manual

wbkSetPeriod Sets the scan period (in nanoseconds). 10-18
wbkSetAcq Sets the acquisition mode and the number of pre-and post-

trigger scans.
10-14

wbkGetMaxFreq Retrieves the maximum valid scan frequency (in Hertz). 10-10
wbkGetMinPeriod Retrieves the minimum valid scan period (in nanoseconds). 10-10
wbkGetFreq Retrieves the current scan frequency (in Hertz). 10-9
wbkGetPeriod Retrieves the current scan period (in nanoseconds). 10-11

Custom Acquisition — Acquire Samples and Analyze
wbkArm Enable an acquisition. 10-2
wbkDisarm Disable the current acquisition. 10-6
wbkBufferTransfer Transfer acquired samples into a user-supplied buffer. 10-4
wbkGetBackStat Retrieves the state of a background transfer. 10-7
wbkStopBack Stops the current background data transfer. 10-23
wbkBufferUnpack Unpacks packed samples. 10-5
wbkBufferRotate Rearranges a circular buffer of scans into chronological order. 10-3
wbkSetAdcProcess Sets the handler for on-the-fly sample processing. 10-15
wbkSetDiskFile Requests that an acquisition be copied to disk. 10-17
wbkSetDataPacking Enables/disables packing of acquired samples 10-16
wbkSetTimeout Sets the maximum amount of time a foreground transfer should

wait.
10-20

Custom Acquisition – Hardware Configuration
wbkSetChanOption Sets the configuration of channel parameters. 10-16
wbkSetModuleOption Sets the configuration of parameters for the entire module. 10-18
wbkGetChanOption Retrieves the channel configuration parameters. 10-16
wbkGetModuleOption Retrieves the module configuration parameters. 10-10

Automatic Error Processing
wbkSetErrorHandler Sets the handler that will be executed upon an error condition. 10-17
wbkDefaultHandler Displays an error message and exits the application. 10-5

Digital I/O
wbkDigWrite Writes a byte to the digital I/O port. 10-6
wbkDigRead Reads a byte from the digital I/O port. 10-6

Commands in Alphabetical Order
The following pages give the details for each WaveBook/512 command listed in alphabetical order.
Each section starts with a table that summarizes the main features of the command. An explanation
follows (and in some cases a programming example or related information).

wbkArm
Prototype wbkArm(void);

Parameters None
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkDisarm

Program References ADCEX2, ADCEX3, ADCEX4, ADCEX5, ADCEX6, ADCEX7, ADCEX8

wbkArm arms an acquisition using the current acquisition configuration. wbkArm downloads all the
acquisition parameters to the hardware and arms the trigger. All of the acquisition parameters must be
set before wbkArm is invoked. If an acquisition has already been performed, then the acquisition
parameters are maintained, and wbkArm will re-use those settings. Otherwise, each of the following
parameters must be set:

Scan Sequence wbkSetScan or wbkSetMux
Trigger Source wbkSetTrigHardware or wbkSetTrigAnalog or

wbkSetTrigComplex
Scan Rate wbkSetFreq or wbkSetPeriod
Acquisition Type / Scan Count wbkSetAcq

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-3

wbkBufferRotate
Prototype int wbkBufferRotate(int *buffer, ulong scanCount, uint chanCount, ulong

acqCount)
Parameters
int _huge *buffer The buffer, containing up to scanCount scans of chanCount samples per scan, that is to be

arranged.
ulong scanCount The number of scans the buffer has room for.
uint chanCount The number of samples (channels) in each scan.
ulong acqCount The total number of scans acquired into the buffer. Retrieved with wbkGetBackStat. May be much

larger than scanCount. If acqCount is not greater than scanCount, then wbkRotateBuffer
does nothing.

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkBufferTransfer, wbkGetBackStat, wbkBufferUnpack

Program References ADCEX6

wbkBufferRotate rotates a circular buffer of scans into chronological order. When scans are
acquired using wbkBufferTransfer, with the cycle parameter non-zero, the buffer is used as a
circular buffer; once it is full, it is re-used, starting at the beginning of the buffer. Thus, when the
acquisition is complete, the buffer may have been overwritten many times and the last acquired scan
may be anyplace within the buffer.

For example, during the acquisition of 1000 scans in a buffer that only has room for 60 scans, the
buffer is filled with scans 1 through 60. Then scan 61 overwrites scan 1, scan 62 overwrites scan 2 and
so on until scan 120 overwrites scan 60. At this point the end of the buffer has been reached again and
so scan 121 is stored at the beginning of the buffer, overwriting scan 61. This process of overwriting
and re-using the buffer continues until all 1000 scans have been acquired. At this point the buffer has
the following contents:

Buffer Position 1 2 3 ... 39 40 41 42 ... 5� 59 60
Scan 961 962 963 … 999 1000 941 942 ... 958 959 960

In this case, because the total number of scans is not an even multiple of the buffer size, the oldest scan
is not at the beginning of the buffer and the last scan is not at the end of the buffer. wbkBufferRotate
can rearrange the scans into their natural, chronological order:

Buffer Position 1 2 3 ... 39 40 41 42 ... 59 59 60
Scan 941 942 943 ... 979 980 981 982 ... 998 999 1000

If the total number of acquired scans is no greater than the buffer size, then the scans have not
overwritten earlier scans and the buffer is already in chronological order. In this case
wbkBufferRotate does not modify the buffer.

wbkBufferRotate only works on unpacked samples. If the scans were packed when they were
transferred, then they must be unpacked with wbkUnpackBuffer before they are re-arranged.

Command Reference (Standard API) Chapter 10

10-4 WaveBook User’s Manual

wbkBufferTransfer
Prototype wbkBufferTransfer(int_huge *buf, ulong scanCount, uchar cycle, uchar

updateSingle, uchar foreground, uchar *active, ulong *retCount)
Parameters
int _huge *buf Pointer to buffer holding the words of data collected from the WaveBook. Can be as large as memory

allows.
ulong scanCount The number of scans the buffer has room for. For packed data, the scan count times the scan length

must be a multiple of 4. Also if packed data is used and will not be unpacked in the same buffer, the
buffer size may be reduced by 25%.

uchar cycle Specifies what happens if the amount of data being acquired exceeds the size of the buffer. If the
cycle flag=0 for no cycle (false), the data transfer stops at the end of the buffer. The program should
execute wbkBufferTransfer again if the acquisition is still active (see active) to store the next set
of data. If cycle mode is non-zero for cycle (true) and the buffer is full, the transfer continues
transferring data starting again overwriting the beginning of the buffer.

uchar updateSingle Controls whether data is transferred whenever data is available or in 2K blocks. If updatesingle=0
(false), data will be transferred in blocks of 2K words, which improves efficiency. This may be useful
for high speed transfers. If updatesingle is non-zero (true), data will be transferred whenever data
is available one word at a time. These single word transfers may be useful for slower transfers to get
immediate recognition of data.

uchar foreground If the foreground flag=0, the buffer transfer command returns to the application program as soon as
practical and the status of the transfer can be monitored using the wbkGetBackStat function. If
non-zero, the buffer transfer command does not return to the application program until the transfer is
complete. If cycle mode is true and foreground is true, the buffer transfer command will not return to
the application program until the acquisition is complete. If cycle is false and foreground is true, the
acquisition complete or buffer full will cause a return to the program.

uchar *active A value returned by the buffer transfer command upon completion. If active=0, the acquisition is
finished and all data has been transferred. If non-zero, the acquisition is still active when the buffer
transfer command has completed. This does not necessarily mean that more data will be
transferred.

ulong *retCount The number of scans that have been transferred into the buffer prior to the function returning.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkGetBackStat, wbkStopBack, wbkSetTimeout

Program References ADCEX2, ADCEX3, ADCEX4, ADCEX5, ADCEX6, ADCEX7, ADCEX8

wbkBufferTransfer transfers data that is being acquired from the WaveBook into memory. For
background data transfers, wbkBufferTransfer may be issued before the arm command so that
the buffer is ready to hold data when the acquisition starts. Typically, wbkBufferTransfer is
performed immediately after the wbkArm command.

The cycle flag in the wbkBufferTransfer command controls the overwriting of the acquisition
buffer. If the cycle flag is true, the background data collection will wrap around in the acquisition
buffer, continually overwriting the oldest data with new data. It is the responsibility of the application
program to process or to transfer the scans to another location, typically a larger buffer or a disk file,
before the data is overwritten. The application should maintain a variable which holds the number of
scans that have been transferred from the acquisition buffer. The difference between the scans
transferred and the total number of scans collected, which is returned by the wbkGetBackStat
command, is the number of new scans available for transfer.

A hardware first in/first out (FIFO) buffer in the WaveBook collects data momentarily so that blocks of
data can be transferred to the PC all at once. The return error code WerrFIFOFull means that the
FIFO buffer in the WaveBook overflowed before the driver was able to empty it. This usually
indicates that the PC or the parallel port is too slow for the acquisition rate. Under Windows, if the
operating system is busy servicing another high priority task, the interrupt latency may cause a buffer
overrun during fast sampling rates. The error code WerrOverrun can occur when in the cycle mode
if the acquisition rate is very close to the maximum transfer rate of the computer’s printer port. This
error occurs when the computer can read data fast enough so that a WerrFIFOFull error doesn’t
occur, but so fast that the foreground task has no time to execute, potentially locking the system.
Packed data transfers can reduce the occurrence of these errors.

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-5

wbkBufferUnpack
Prototype int wbkBufferUnpack (int *packed, int *unpacked, ulong scanCount, uint

chanCount, ulong acqCount);
Parameters
int *packed The array of packed readings.
int *unpacked The array of unpacked readings. The packed data can be unpacked in place by setting unpacked the

same as packed.
ulong scanCount The number of scans the buffer has room for.
uint chanCount The number of samples (channels) in each scan.
ulong acqCount The total number of scans in the buffer. If acqCount is less than scanCount, then only acqCount

scans will be unpacked. The retCount parameter of the wbkBufferTransfer or
wbkGetBackStat function can be passed as the acqCount parameter once the transfer started by
wbkBufferTransfer is completed.

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetDataPacking, wbkBufferTransfer, wbkBufferRotate, wbkGetBackStat

Program References ADCEX6, ADCEX8

wbkBufferUnpack unpacks packed samples. To maximize the sample acquisition rate through the
parallel port, the WaveBook/512 can pack 4 12-bit samples into 3 16-bit words before they are
transferred to the PC. wbkSetDataPacking controls whether or not packing is enabled. If packing
is enabled, then once the data has been transferred with wbkBufferTransfer, it should be
unpacked with wbkBufferUnpack before any further processing can be performed.

If the buffer is large enough to hold the unpacked samples, then they may be unpacked in place with the
unpacked samples overwriting the packed samples. This reduces the memory requirements by
eliminating the need for a separate buffer.

wbkClose
Prototype wbkClose(void);

Parameters None
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkInit, wbkSelectPort

Program References ADCEX1, ADCEX2, ADCEX3, ADCEX4, ADCEX5, ADCEX6, ADCEX7, ADCEX8

wbkClose takes the currently selected WaveBook off line. Should be used at the end of an
application to assure that the WaveBook is properly reset. If more than one WaveBook is in use then
each should be individually selected with wbkSelectPort and then closed.

wbkDefaultHandler
Prototype void wbkDefaultHandler(int wbkErrnum);

Parameters
int wbkErrnum The error code of the detected error.
Returns Nothing
See Also wbkSetErrHandler

Program References None

wbkDefaultHandler displays an error message and then exits the application program. When the
WaveBook library is loaded, it invokes the default error handler whenever it encounters an error. The
error handler may be changed with wbkSetErrHandler.

Command Reference (Standard API) Chapter 10

10-6 WaveBook User’s Manual

wbkDigRead
Prototype int wbkDigRead(uchar address, uchar *byteVal);

Parameters
uchar address The address, between 0 and 31, that is presented on the 5 digital I/O port address outputs during the

read.
uchar *byteVal The read data.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkDigWrite, wbkSetScan, wbkSetMux

Program References None

wbkDigRead reads a byte from the digital I/O port data lines after setting the digital I/O port address
lines as specified. wbkDigRead may not be used during analog acquisition. It may only be used
when the acquisition is inactive. To read the digital I/O port during an acquisition, set the first channel
of the scan to channel 0 so that the digital inputs are read as the first sample of the scan.

wbkDigRead sets the 5 address outputs on the digital I/O connector, thus addressing up to 32 8-bit
input sources.

wbkDigWrite
Prototype int wbkDigWrite(uchar address, uchar byteVal);

Parameters
uchar address The address, between 0 and 31, that is presented on the 5 digital I/O port address outputs during the

write.
uchar byteVal The data to write.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkDigRead

Program References None

wbkDigWrite writes a byte to the digital I/O port data lines after setting the digital I/O port address
lines as specified. wbkDigWrite may not be used during analog acquisition. It may only be used
when the acquisition is inactive. wbkDigWrite sets the 5 address outputs on the digital I/O
connector, thus addressing up to 32 8-bit output destinations.

wbkDisarm
Prototype wbkDisarm(void);

Parameters None
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkArm

Program References None

wbkDisarm disarms the acquisition, stops any ongoing sample acquisition, prevents any further
triggers from being recognized, and finishes transferring acquired samples. This command forces the
current acquisition, if any, to stop. A new acquisition may then be started with wbkArm.

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-7

wbkGetBackStat
Prototype int wbkGetBackStat(uchar *active, ulong *count);

Parameters
uchar *active uchar *active, 0 if the acquisition is complete and all data has been read; non zero otherwise.
ulong *count The total number of scans read.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkBufferTransfer, wbkSetDataPacking

Program References ADCEX4, ADCEX6, ADCEX7, ADCEX8

wbkGetBackStat retrieves the current state (active or inactive) and the total number of scans read
so far by a background buffer transfer. If the background operation is active, the acquisition is
continuing; otherwise, it is complete. The total number of scans can be used to calculate the number of
new scans available so that they can be processed and/or transferred out of the background acquisition
buffer.

wbkGetCalConstants
Prototype wbkGetCalConstants (uint chan, uchar gain, uchar bipolar,uint *gainConstant,

int *offsetConstant);
Parameters
uint chan Channel to change cal constants.
uchar gain Gain to change cal constants.
uchar bipolar Range to change cal constants.
uint *gainConstant Variable to hold the gain calibration constant (gain times 0x8000).
int *offsetConstant Variable to hold the offset calibration constant (1 LSB = 0x0010).
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetUserCalConstants, wbkSetCalTable

Program References None

wbkGetCalConstants gets the calibration constants from the currently selected calibration table
chosen by the wbkSetCalTable command.

The user calibration constants are gains and offsets that are applied to the input data. The data comes
in, is multiplied by the gain, then the offset is added to it. The resulting data is the conversion between
the raw A/D data and the data that is presented during the acquisition. Each channel, gain, and
bipolar/unipolar setting has a different pair of gain and offset values. The first three parameters of the
wbkGetCalConstants function specify which set of constants are to be retrieved. The last two
parameters are the actual constants. These constants are in a particular binary format. The gain
constant is 32768 times the gain. For a gain of ×1 the gain constant is 32768 or 0x8000. The
maximum gain is approximately ×2 (65535/32768) and the minimum gain is ×0 (0/32768). The offset,
which is a left-justified signed 12-bit number, is added to the final result. A single least-significant bit
has an integer value of 16 or 0x0010.

wbkGetChannelCount
Prototype wbkGetChannelCount(uint chan, uchar *chanCount);

Parameters
uint chan Channel number between 1 and 72.
uchar *chanCount Number of channels in the chassis.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program Reference None

wbkGetChannelCount - Each chassis in the WaveBook product line contain certain number of
channels. Presently, the WaveBook/512 and the WBK10 expansion chassis contain 8 channels each.
As future products are released, the number of channels per chassis may vary depending on the
application. The wbkGetChannelCount retrieves the number of analog channels that are
physically present in the chassis.

Command Reference (Standard API) Chapter 10

10-8 WaveBook User’s Manual

wbkGetChannelInfo
Prototype wbkGetChannelInfo(uint chan, uchar option, uchar whichInfo, char*info);

Parameters
uint chan The channel number from 1-72 for which to read the info.
uchar option If option=0, the main unit channel info will be retrieved, otherwise the option card info will be retrieved.
uchar whichInfo Choose which information is to be retrieved from the specified unit/option card. Can be one of the

following: WinfoLastChangedDate, or WinfoLastChangedTime.
char *info If whichInfo is set to WinfoLastChangedTime, the time of the last write to NVRAM will be returned in

the format HH:MM:SS. If whichInfo is set to WinfoLastChangedDate, the date of the last write to
the NVRAM will be returned in the format MM/DD/YYYY

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkGetChannelInfo returns various channel information from the non-volatile memory of the
main unit or option card, of the selected channel. Currently the Date or Time of the last write to the
NVRAM can be retrieved as an ASCII string.

wbkGetChannelType
Prototype wbkGetChannelType(uint chan, uchar option, uchar *type);

Parameters
uint chan The channel number from 1-72 for which to read the type.
uchar option If option=0, the main unit channel type will be retrieved, otherwise the option card type will be retrieved.
uchar *type The channel type is one of the following: WmctNone,WoctNone, WctStd, WctSSH. Type WctNone

is the channel (expansion) if not physically connected. Type is WmctWbk512 or WmctWbk10 if the
channel exists, but channel does not use an option card. Finally, type is WoctWbk11 if the channel
uses an SSH option card. If option=0, type is either WmctWbk512, WmctWbk10, or WmctNone. If
option is non-zero, type is either WoctWbk10 or WoctNone.

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkGetChannelType returns the channel characteristics, main unit or option card, of the selected
channel. A returned value equal to WmctNone indicates that the channel or option card does not exist.
The only time such a type can be returned is if the selected channel is an expansion channel or option
card.

wbkGetChanOption
Prototype int wbkGetChanOption(unsigned int chan, unsigned char optionCard, unsigned

int optionType, double *optionValue)
Parameters
unsigned int chan The number of the channel that data is being requested for.
unsigned char
optionCard

Whether the value is to be retrieved from an option card or a main unit.

unsigned int
optionType

The option value to be retrieved (see table WBK Channel Option Type Definitions).

double *optionValue The return value.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkGetChanOption allows the user to retrieve channel configuration parameters. The current
value is returned in the optionValue parameter when the appropriate defined constant (from the
WBK Channel Option Type Definitions table) is passed to the function in the optionType
parameter.

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-9

wbkGetDriverVersion
Prototype wbkGetDriverVersion(uint *version);

Parameters
uint *version A decimal version number which is 100 times the actual version. For example, 110 would indicate a

version of ‘1.10’.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References ADCEX3

wbkGetDriverVersion retrieves the version of the WaveBook software driver.

wbkGetFreq
Prototype wbkGetFreq(double *preTrigFreq, double *postTrigFreq);

Parameters
double *preTrigFreq The currently defined pre-trigger sampling frequency from 1000000.0 to 0.01 Hz.
double *postTrigFreq The currently defined post-trigger sampling frequency from 1000000.0 to 0.01 Hz.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetFreq, wbkSetPeriod, wbkGetPeriod, wbkGetMaxFreq, wbkGetMinPeriod

Program References ADCEX2

wbkGetFreq reads the current setting of both the pre-trigger and post-trigger scan frequencies set by
the wbkSetFreq or wbkSetPeriod command.

wbkGetGainVal
Prototype wbkGetGainVal(uint *chan, uchar *gain, float *gainVal);

Parameters
uint *chan Specifies the channel number from 1 - 72 for which to read the gain setting.
uchar *gains The gain code for which the gain value will be calculated. Gain can be one of the following: WgcX1,

WgcX2, WgcX5, WgcX10, WgcX20 (SSH), WgcX50 (SSH), WgcX100(SSH).
float *gainVal The actual gain value. Valid values are: 1.0, 2.0, 5.0, 10.0, 20.0 (SSH), 50.0 (SSH), 100.0 (SSH).
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkGetGainVal returns the gain setting of the selected channel through the argument gainVal.
The gain setting is the actual hardware gain value for the specified channel and gain code. The gain
setting is useful for converting the data read from A/D count values to a usable format such as volts.

Command Reference (Standard API) Chapter 10

10-10 WaveBook User’s Manual

wbkGetMaxFreq
Prototype wbkGetMaxFreq(double *preTrigFreq, double *postTrigFreq);

Parameters
double *preTrigFreq Maximum frequency at which pre-trigger scans may be read. preTrigFreq is between 1,000,000.00

and 0.01 Hz (scans per second).
double *postTrigFreq Maximum frequency at which post-trigger scans may be read. postTrigFreq is between

1,000,000.00 and 0.01 Hz (scans per second).
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkGetMinPeriod, wbkSetFreq, wbkGetFreq, wbkSetPeriod,wbkGetPeriod

Program References None

wbkGetMaxFreq - The time required to complete a scan depends on a number of different
parameters. The wbkGetMaxFreq command provides an easy method for determining this time.
The value returned by this function is the maximum frequency at which a scan can be completed.
During the post-trigger time, this depends on the actual number of samples you are acquiring per scan
and whether or not the first channel might be a sample & hold channel. If the first channel is a sample
& hold channel, extra dummy acquisition time must be added. During the pre-trigger period the
situation becomes even more complicated as trigger channels become involved. In the case of complex
triggering, several trigger channels may be involved in determining the trigger condition. Additional
time is required as each channel is examined for a trigger condition. Therefore, even though the scan
composition is always the same pre-trigger and post-trigger, the additional burden of triggering can
make the pre-trigger maximum frequency lower than the post-trigger maximum frequency.

wbkGetMinPeriod
Prototype wbkGetMinPeriod(double *preTrigPeriod, double *postTrigPeriod);

Parameters
double
*preTrigPeriod

Minimum period at which pre-trigger scans can be read. preTrigPeriod is between 1000.0 and
100,000,000,000 nanoseconds (100 s).

double
*postTrigPeriod

Minimum period at which post-trigger scans can be read. postTrigPeriod is between 1000.0 and
100,000,000,000 nanoseconds (100 s).

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkGetMaxFreq, wbkGetPeriod, wbkGetFreq, wbkSetPeriod, wbkSetFreq

Program References None

wbkGetMinPeriod returns the minimum pre- and post-trigger periods of a scan. The values
returned are the reciprocals of the wbkGetMaxFreq command values which are the pre- and post-
trigger periods and are measured in nanoseconds.

wbkGetModuleOption
Prototype int wbkGetModuleOption(unsigned int chan, unsigned char optionCard, unsigned

int optionType, double *optionValue)
Parameters
unsigned int chan Any channel on the module (expansion chassis) that has the correct type of option.
unsigned char
optionCard

Whether the value is to be retrieve from an option card or a main unit.

unsigned int
optionType

The option value to be retrieved (see table WBK Module Option Type Definitions).

double *optionValue The return value.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkGetModuleOption allows the user to retrieve module configuration parameters. The current
value is returned in the optionValue parameter when the appropriate defined constant (from the
WBK Module Option Type Definitions table) is passed to the function in the optionType parameter.

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-11

wbkGetPeriod
Prototype wbkGetPeriod(double *preTrigPeriod, double *postTrigPeriod);

Parameters
double
*preTrigPeriod

The pre-trigger scan period between 1000 and 10,00,000 nanoseconds

double
*postTrigPeriod

The post-trigger scan period between 1000 and 10,00,000 nanoseconds

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References ADCEX2

wbkGetPeriod reads the current setting of both the pre-trigger and post-trigger sample periods set
by the wbkSetPeriod or wbkSetFreq command.

wbkGetProtocol
Prototype wbkGetProtocol(int *protocol);

Parameters
int *protocol Set to one of the protocol codes described under wbkSetProtocol.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkGetProtocol - Depending on your printer port, one of several protocols might be selected.
This command returns the presently selected protocol.

wbkGetScan
Prototype wbkGetScan(uint *chans, uchar *gains, uchar *bipolar, uint *count);

Parameters
uint *chans An array to hold up to 128 channel numbers. The first location can be 0 for the high speed digital

input. Channel numbers 1 through 8 are local channels and 9 through 72 are expansion channels.
uchar *gains An array to hold up to 128 gain codes. Each gain code can be one of the following: WgcX1, WgcX2,

WgcX5, WgcX10, WgcX20 (SSH), WgcX50 (SSH), WgcX100 (SSH).
uchar *bipolar An array to hold up to 128 bipolar flags. Each bipolar flag can be 0 for unipolar mode and non-zero for

bipolar mode.
uint count The number of elements in each of the previous arrays and can be between 1 and 128.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetScan, wbkSetMux

Program References None

wbkGetScan returns 3 arrays describing the current scan configuration. The count argument
indicates how many channels are in the scan. The following table shows the configuration of the
returned array.

Array Element Channel Number Gain Setting Bi/Uni-Polar Setting
0 chans(0) gains(0) bipolar(0)
1 chans(1) gains(1) bipolar(1)
2 chans(2) gains(2) bipolar(2)
3 chans(3) gains(3) bipolar(3)
etc. etc. etc. etc.
count-1 chans(count-1) gains(count-1) bipolar(count-1)

Command Reference (Standard API) Chapter 10

10-12 WaveBook User’s Manual

wbkInit
Prototype wbkInit(uchar lptPort, uchar lptIntr);

Parameters
uchar lptPort The port number which the WaveBook is connected to (LPT1, LPT2, LPT3, LPT4)
uchar lptIntr The interrupt level (usually 7 for LPT1 and 5 for LPT2).
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkClose, wbkSetDefaultProtocol

Program References ADCEX1, ADCEX2, ADCEX3, ADCEX4, ADCEX5, ADCEX6, ADCEX7, ADCEX8

wbkInit starts the session with the WaveBook by putting it on-line and initializing its internal
hardware. An error code, WerrNotOnLine, is returned if a WaveBook is not found at the specified
location.

wbkRd
Prototype wbkRd(uint chan, int _huge *sample, uchar gain,uchar bipolar);

Parameters
uint chan A single channel number to sample. A channel number of 0 will cause the high speed digital input to

be read. Channel numbers 1 through 8 are local channels and 9 through 72 are expansion channels.
uint _huge *sample A pointer to the word where the sample will be stored.
uchar gain The channel gain which can be one of the following: WgcX1, WgcX2, WgcX5, WgcX10, WgcX20

(SSH), WgcX50 (SSH), WgcX100 (SSH).
uchar bipolar The bipolar flag, which can be 0 for unipolar mode, and non-zero for bipolar mode.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkRdN, wbkRdScan, wbkRdScanN

Program References ADCEX1

wbkRd is used to take a single reading from a single channel using the specified gain and offset. It
takes the channel to use as the trigger, the pointer to the word to hold the result, the gain code and the
range code and takes a reading based on these parameters. This function will use a software trigger to
immediately trigger and acquire one sample from the specified channel.

wbkRdN
Prototype wbkRdN(uint chan, int _huge *buf, ulong scanCount, uchar trigger, float

level, double freq, uchar gain, uchar bipolar);
Parameters
uint chan A single channel number to sample. A channel number of 0 will cause the high speed digital input to

be read. Channel numbers 1 through 8 are local channels and 9 through 72 are expansion channels.
uint _huge *buf Pointer to buffer holding the words of data collected from the WaveBook. Can be as large as memory

allows.
ulong scanCount Specifies the number of scans to read after a trigger occurs.
uchar trigger The trigger source. Can be one of the following types: WtsSoftware, WtsTTLRise,

WtsTTLFall, WtsAnalogRise and WtsAnalogFall.
float level The trigger level if an analog trigger is specified.
double freq The post-trigger sampling frequency from 1000000.0 to 0.01 Hertz.
uchar gain The channel gain which can be one of the following: WgcX1, WgcX2, WgcX5, WgcX10, WgcX20

(SSH), WgcX50 (SSH), WgcX100 (SSH).
uchar bipolar The bipolar flag, which can be 0 for unipolar mode, and non-zero for bipolar mode.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkRd, wbkRdScan, wbkRdScanN

Program References ADCEX1

wbkRdN is used to take multiple scans from a single channel. This function takes a channel, a pointer
to an array to hold scan readings, a scan count (sample count), trigger type, trigger level, the sampling
frequency in Hz, gain, and bipolar settings and uses these parameters to take a scan. If the trigger is set
to software, then wbkRdN will trigger immediately. These are foreground commands (they do not
return to the application program until the specified acquisition is complete).

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-13

wbkRdScan
Prototype wbkRdScan(uint startChan,uint endChan, int _huge *buf, uchar gain, uchar

bipolar);
Parameters
uint startChan The starting channel of the scan sequence range. startChan can be 0 for the high speed digital

input, 1 through 8 for local channels and 9 through 72 for expansion channels.
uint endChan The ending channel of the scan sequence range. endChan cannot be less than startChan. 1

through 8 are local channels and 9 through 72 are expansion channels.
int _huge *buf Pointer to buffer holding the words of data collected from the WaveBook. Can be as large as memory

allows.
uchar gain The channel gain which can be one of the following: WgcX1, WgcX2, WgcX5, WgcX10, WgcX20

(SSH), WgcX50 (SSH), WgcX100 (SSH).
uchar bipolar The bipolar flag, which can be 0 for unipolar mode, and non-zero for bipolar mode.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkRd, wbkRdN, wbkRdScanN

Program References ADCEX1

wbkRdScan reads a single sample from multiple channels using the specified gain and offset for all
channels. This function will use a software trigger to immediately trigger and acquire one scan
consisting of each channel starting with startChan and ending with endChan.

wbkRdScanN
Prototype wbkRdScanN(uint startChan, uint endChan, int _huge *buf, ulong scanCount,

uchar trigger, float level, double freq, uchar gain, uchar bipolar);
Parameters
uint startChan The starting channel of the scan sequence range. startChan can be 0 for the high speed digital

input, 1 through 8 for local channels and 9 through 72 for expansion channels.
uint endChan The ending channel of the scan sequence range. endChan cannot be less than startChan. 1

through 8 are local channels and 9 through 72 are expansion channels.
int _huge *buf Pointer to buffer holding the words of data collected from the WaveBook. Can be as large as memory

allows.
ulong scanCount Specifies the number of scans to read after a trigger occurs.
uchar trigger The trigger source. Can be one of the following types: WtsSoftware, WtsTTLRise,

WtsTTLFall, WtsAnalogRise and WtsAnalogFall.
float level The trigger level (in volts) if an analog trigger is specified.
double freq The sampling frequency from 1000000.0 to 0.01 Hertz.
uchar gain The channel gain which can be one of the following: WgcX1, WgcX2, WgcX5, WgcX10, WgcX20

(SSH), WgcX50 (SSH), WgcX100 (SSH).
uchar bipolar The bipolar flag, which can be 0 for unipolar mode, and non-zero for bipolar mode.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkRd, wbkRdN, wbkRdScan

Program References ADCEX1

wbkRdScanN reads multiple scans from multiple channels using the specified gain and offset for all
channels. This function will arm the trigger and acquire scans consisting of each channel starting with
startChan and ending with endChan.

Command Reference (Standard API) Chapter 10

10-14 WaveBook User’s Manual

wbkSelectPort
Prototype int wbkSelectPort(uchar lptPort);

Parameters
uchar lptPort The port number to which the WaveBook is connected (one of LPT1, LPT2, LPT3, LPT4).
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkSelectPort selects an initialized WaveBook/512. This function causes any subsequent
function calls to be performed on this WaveBook. Because wbkInit initializes then selects a
WaveBook/512, wbkSelectPort is only needed when using multiple WaveBooks.

Note: wbkInit must be called with the corresponding LPT port before wbkSelectPort can select
it.

wbkSetAcq
Prototype wbkSetAcq(uchar mode, ulong preTrigCount,ulong postTrigCount);

Parameters
uchar mode Sets the acquisition mode. Valid modes are: WamNShot, WamNShotRearm, WamPrePost,

WamInfinitePost.
ulong preTrigCount Specifies the minimum number of scans to read before arming the trigger when in PrePost mode.

preTrigCount is ignored in all other modes.
ulong postTrigCount Specifies the number of scans to read after a trigger occurs. postTrigCount is ignored in the

InfinitePost mode.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References ADCEX3, ADCEX4, ADCEX5, ADCEX6, ADCEX7, ADCEX8

wbkSetAcq sets the acquisition mode and the number of pre-trigger and post-trigger scans to collect.
There are four acquisition modes:

NShot mode This mode sets up the system to collect only post-trigger scans, the argument
preTrigCount is ignored.

NShotRearm mode Like NShot mode, this mode sets up the system to collect only post-trigger scans,
but then automatically rearms the system for another, identical acquisition.

NShotPrePost mode This mode sets up the system to collect both pre-trigger and post-trigger scans. The
pre-trigger scan collection is initiated by this command. Pre-trigger data collection
continues until the trigger is satisfied, after which the post-trigger scans are
collected.

InfinitePost mode This mode sets up the system to collect an infinite amount of post-trigger scans. In
this mode, data collection will continue until the wbkDisarm command is called.

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-15

wbkSetAdcProcess
Prototype wbkSetAdcProcess(wbkAdcProcessFPT wbkAdcProcess);

Parameters
wbkSetAdcProcess Pointer to the data handler function or NULL to disable.
Prototype for Data Handler wbkAdcProcessFT(int _huge *buf, ulong wordCount) ;

Parameters
int _huge *buf Pointer to data storage buffer.
ulong wordCount Total number of words transferred
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkSetAdcProcess provides access to the interrupt-time data transfer. wbkSetAdcProcess
sets up a data handler for the WaveBook. Any time data is transferred by the WaveBook, it will call
this handler specifying to the handler the address into which the data was transferred and the number of
words that were transferred. Packing and scan boundaries are ignored. You must pass to the
setProcess command a pointer to a function (in C) that is designed to process the data. This function
requires two parameters, a buffer to the data that is being passed and the count of words that were
transferred to the buffer. Use of this function requires caution as it operates at interrupt time.

wbkSetCalInput
Prototype int wbkSetCalInput(uchar calInput);

Parameters
uchar Input Valid values: WciNormal, WciCalGnd, WciCalGain
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkSetCalInput sets the WaveBook to sample either the normal analog inputs (BNCs), a
calibration ground input or a calibration gain input (5.0 V or 0.5 V).

wbkSetCalTable
Prototype wbkSetCalTable(uchar user);

Parameters
uchar user Set to non-zero to choose the user calibration table or 0 to choose the factory calibration table.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetUserCalConstants, wbkWriteUserCalConstants, wbkGetCalConstants

Program References None

wbkSetCalTable - To achieve rated accuracy, the WaveBook uses a digital signal processor (DSP)
to transparently compensate each channel while it is being read. For plug-and-play purposes, each
WaveBook component, including option and expansion hardware, contain factory-installed
compensation tables in an on-board, non-volatile memory device. After the WaveBook and its options
are integrated into a system, all of the individual calibration tables are merged by the DSP into one
system calibration table for real-time channel compensation.

If the user desires, the WaveBook can be calibrated in the field as a system using the included WaveCal
application. WaveCal ultimately creates a system calibration table which could be used in place of the
factory-installed tables.

This command allows you to choose between the factory calibration and the user calibration. If the
user calibration is selected, WaveCal must be executed first.

Command Reference (Standard API) Chapter 10

10-16 WaveBook User’s Manual

wbkSetChanOption
Prototype int wbkSetChanOption(unsigned int chan, unsigned char optionCard, unsigned

int optionType, double optionValue)
Parameters
unsigned int chan The number of the channel to be configured.
unsigned char
optionCard

Whether the option is to be applied to an option card or a main unit.

unsigned int
optionType

The configurable option to be set (enum). (see table WBK Channel Option Type Definitions)

double optionValue The value to set the option to. Enum or value depending on option type (see table WBK Channel
Option Value Definitions)

Returns An error number, or 0 if no error (see Error Code table at end of this chapter)
See Also
Program References None

wbkSetChanOption allows the user to configure channel parameters for WBK modules with
software-configurable settings.

wbkSetDataPacking
Prototype int wbkSetDataPacking(uchar packed);

Parameters
uchar packed Packed is 0 to disable compression or non-zero to enable it.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkBufferUnpack
Program References None

wbkSetDataPacking - If the sample rate is high and buffer overruns are occurring, data
compression is recommended. To maximize the sample acquisition rate through the parallel port, the
WaveBook/512 can pack 4 12-bit samples into 3 16-bit words before they are transferred to the PC.
wbkSetDataPacking controls whether or not packing is enabled. If packing is enabled, then once
the data has been transferred with wbkBufferTransfer, it should be unpacked with
wbkBufferUnpack before any further processing can be performed.

If the buffer is large enough to hold the unpacked samples, then they may be unpacked in place with the
unpacked samples overwriting the packed samples. This reduces the memory requirements by
eliminating the need for a separate buffer.

wbkSetDefaultProtocol
Prototype wbkSetDefaultProtocol (int protocol);

Parameters
int protocol Valid protocols are: WbkProtocolNone, WbkProtocol8, WbkProtocol4,

WbkProtocolFPort, WbkProtocolSL, WbkProtocolSMC666, WbkProtocolFastEPP,
WbkProtocolEPPBios.

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetProtocol, wbkGetProtocol

Program References None

wbkSetDefaultProtocol - The wbkInit function tries to establish reliable communications
with the WaveBook by using the default protocol (4-bit). The wbkSetDefaultProtocol
command can be called before wbkInit to force the use of the specific printer port protocol that was
found to work using the wbkTest program rather than the 4-bit protocol that would be used by
wbkInit.

Fastest 1. WbkProtocolFastEPP
. 2. WbkProtocolSMC666
. 3. WbkProtocolSL
. 4. WbkProtocolFPort
. 5. WbkProtocolEPPBIOS
. 6. WbkProtocol8

Slowest 7. WbkProtocol4

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-17

wbkSetDiskFile
Prototype wbkSetDiskFile (const char _far *file, uchar openMode, ulong preWrite);

Parameters
const char _far
*file

Specifies the name of the file.

uchar openMode Specifies whether data is to be appended to the file, overwritten, or a new file created
ulong preWrite The number of scans for which space on the disk is to be allocated
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References ADCEX8

wbkSetDiskFile requests that an acquisition be copied to disk. Once the disk file has been set up
to accept the data, as the data is transferred into the buffer, it will also be transferred to disk. The
actual transfer is performed by the wbkGetBackStat command. If a foreground transfer is in
progress, the wbkGetBackStat command is internally used to monitor the progress and thereby
automatically transferring to disk. If a background transfer is being performed and the data is to be
transferred to disk, the wbkGetBackStat must be called often enough to ensure that data is not lost
on its way to the disk. If this transfer is enabled and data is lost as it is transferred to the disk due to the
data rate being too high or wbkGetBackStat not being called often enough, an error will be
generated and the acquisition stopped. The wbkSetDiskFile command applies only to the
immediately subsequent acquisition, and must be invoked before the wbkArm command that starts the
acquisition. The following acquisition will not automatically go to disk unless another
wbkSetDiskFile command is specified.

wbkSetErrorHandler
Prototype wbkSetErrorHandler(wbkSetErrorHandlerFPT wbkErrorHandler);

Parameters
wbkErrorHandler This is a function that takes an integer (error code) and returns nothing, or NULL to disable.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkDefaultHandler

Program References ADCEX1

*** For C and Pascal Only ***
wbkSetErrorHandler - If the driver detects an error condition during its operation, it
automatically calls a default system error handler. This command allows the user to supply an error
handler that is automatically called when a system error is detected.

*** For Visual Basic and QuickBASIC ***
wbkSetErrorHandler (ERRNUM%) - If the driver detects an error condition during its operation,
it will pass the error code as the return value of each function. This command allows the user to set a
Basic error number which will be generated when an error occurs. The error can then be handled using
the standard ONERROR feature of Basic.

wbkSetFreq
Prototype wbkSetFreq(double preTrigFreq, double postTrigFreq);

Parameters
double preTrigFreq The pre-trigger frequency from 1000000.0 to 0.01 Hz.
double postTrigFreq The post-trigger frequencies from 1000000.0 to 0.01 Hz.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetPeriod, wbkGetFreq, wbkGetPeriod, wbkGetMaxFreq, wbkGetMinPeriod

Program References ADCEX2, ADCEX3, ADCEX4, ADCEX5, ADCEX6, ADCEX7, ADCEX8

wbkSetFreq sets both the pre- and post-trigger scan rates in Hertz.

Every acquisition is composed of one or more repetitions of a scan. A scan is a list of some or all of
the input channels and their respective input ranges. Scans can vary in length from a single sample up
to 128 samples.

Command Reference (Standard API) Chapter 10

10-18 WaveBook User’s Manual

wbkSetModuleOption
Prototype int wbkSetModuleOption(unsigned int chan, unsigned char optionCard, unsigned

int optionType, double optionValue)
Parameters
unsigned int chan Any channel on the module (expansion chassis) to be configured.
unsigned char
optionCard

Whether the option is to be applied to an option card or a main unit.

unsigned int
optionType

The configurable option to be set (enum). (see table WBK Module Option Type Definitions)

double optionValue The value to set the option to. Enum or value depending on option type. (see table WBK Module
Option Value Definitions)

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References None

wbkSetModuleOption allows the user to configure parameters that apply to the whole module (for
WBK modules with software-configurable settings).

wbkSetMux
Prototype int wbkSetMux(uint startChan, uint endChan, uchar gain, uchar bipolar);

Parameters
uint startChan The starting channel of the scan sequence range. StartChan can be 0 for the high speed digital input,

1 through 8 for local channels and 9 through 72 for expansion channels.
uint endChan The ending channel of the scan sequence range. endChan cannot be less than startChan. 1 through

8 are local channels and 9 through 72 are expansion channels.
uchar gain The global gain setting for all of the channels in the specified range. Valid gain codes are: WgcX1,

WgcX2, WgcX5, WgcX10, WgcX20 (SSH), WgcX50 (SSH), WgcX100 (SSH).
uchar bipolar An array of bipolar flags that can be 0 for unipolar mode and non-zero for bipolar mode.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References ADCEX2, ADCEX4, ADCEX5, ADCEX7, ADCEX8

wbkSetMux - Simpler and less flexible than the wbkSetScan command, this command configures a
scan sequence of channels from a specified start channel to a specified end channel, all with the same
gain and polarity setting.

wbkSetPeriod
Prototype wbkSetPeriod(double preTrigPeriod, double postTrigPeriod);

Parameters
preTrigPeriod The pre-trigger scan period from 1000 to 100,000,000,000 nanoseconds.
postTrigPeriod The post-trigger scan period from 1000 to 100,000,000,000 nanoseconds.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetFreq, wbkGetPeriod, wbkGetFreq, wbkGetMinPeriod, wbkGetMaxFreq

Program References None

wbkSetPeriod - Like the wbkSetFreq command, this command sets the rate at which the scans
are sampled. This command allows the rate to be set in terms of time between scans rather than scans
per second.

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-19

wbkSetProtocol
Prototype wbkSetProtocol(int protocol);

Parameters
int protocol Valid protocols are: WbkProtocolNone, WbkProtocol8, WbkProtocol4,

WbkProtocolFPort, WbkProtocolSL, WbkProtocolSMC666, WbkProtocolFastEPP,
WbkProtocolEPPBios

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkGetProtocol

Program References None

wbkSetProtocol - Depending on your printer port, one of several printer port communication
protocols might be appropriately selected. This command sets the desired protocol. For maximum
throughput, the highest protocol supported by your parallel port should be selected. Use the included
WbkTest program to evaluate your parallel port hardware.

WbkProtocolFastEPP Specifies the ISA-bus WBK20 and PCMCIA card WBK21 high-speed EPP interfaces
which are capable of more than 2 MBytes/second. All of the other protocols are
typically much slower than this with the EPP protocols typically achieving 600-800
kbytes/second, and the non-EPP protocols limited to 50-200 kbytes/second.

WbkProtocolSMC666 Specifies a Standard-Microsystem FDC37C666-based EPP interface board, such as
the Quatech MMP-100, that is jumper-configurable for EPP operation.

WbkProtocolSL Specifies an Intel 80386SL compatible EPP interface.
WbkProtocolFPort Specifies an FarPoint EPP interface.
WbkProtocolEPPBios Specifies an EPP Draft Revision 3.0 compatible software driver which is supplied by

the computer manufacturer to perform EPP operation.
WbkProtocol8 Is a non-EPP protocol for IBM AT compatible printer ports. As this protocol is limited

to less than 200 kbytes/second, its use is not recommended with the
WaveBook/512.

WbkProtocol4 Is an even slower non-EPP protocol that is compatible with virtually any printer port,
but is typically limited to 60 kbytes/second.

Note: Protocols here are arranged from fastest to slowest.

wbkSetScan
Prototype int wbkSetScan(uint *chans, uchar *gains, uchar *bipolar, uint count);

Parameters
uint *chans An array of up to 128 channels. The first location can be 0 for the high speed digital input. Channel

number 1 through 8 are local channels and 9 through 72 are expansion channels.
uchar *gains An array of up to 128 gain codes. Valid gain codes are: WgcX1, WgcX2, WgcX5, WgcX10, WgcX20

(SSH), WgcX50 (SSH), WgcX100 (SSH).
uchar *bipolar An array of bipolar flags that can be 0 for unipolar mode and non-zero for bipolar mode.
unit count The number of elements in each of the previous arrays and can be between 1 and 128.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References ADCEX3, ADCEX6

wbkSetScan configures a scan sequence consisting of multiple channels and corresponding gain and
bipolar/unipolar settings. As many as 128 entries can be made in the scan configuration. Any analog
input channel, with any configuration, in any order, can be included in the scan. Channels can be
entered multiple times at the same or different configurations. The WBK11 option card cannot have
the same channels in the scan sequence at different gains. The high speed digital input port can also be
included as the first location although its gain and bipolar/unipolar setting will be ignored.

The channel arrays are organized as follows.

Array Element Channel Number Gain Setting Bi/uni-Polar Setting
0 chans(0) gains(0) bipolar(0)
1 chans(1) gains(1) bipolar(1)
2 chans(2) gains(2) bipolar(2)
3 chans(3) gains(3) bipolar(3)
etc. etc. etc. etc.
count-1 chans(count-1) gains(count-1) bipolar(count-1)

Command Reference (Standard API) Chapter 10

10-20 WaveBook User’s Manual

wbkSetTimeout
Prototype int wbkSetTimeout(ulong timeout);

Parameters
ulong timeout The time-out value in milliseconds, if non-zero (or disable time-out if 0). The default time-out value is

10,000 milliseconds and the maximum is about 1 day (86,400,000 milliseconds).
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkBufferTransfer

Program References None

wbkSetTimeout sets the amount of time (in milliseconds) that a foreground operation will wait
before aborting with a time-out error.

When using the foreground acquisition mode, data collection routines will not return until the
acquisition is complete. If the trigger is never satisfied or the acquisition never completes, a potential
system lock-up can occur. This command provides a means of recovering by setting a maximum time-
out after which the foreground routine will be aborted. If the foreground routine fails to return before
the time-out period, the acquisition command is automatically aborted.

wbkSetTrigAnalog
Prototype int wbkSetTrigAnalog(uint chan, uchar gain, uchar bipolar, uchar rising,

float level, float hysteresis);
Parameters
uint chan Sets the trigger channel. Channel numbers 1 through 8 are local channels and 9 through 72 are

expansion channels. The high-speed digital input cannot be used as a complex trigger channel.
uchar gain Sets the channel gain using a gain code. Each gain code can be one of the following: WgcX1, WgcX2,

WgcX5, WgcX10, WgcX20 (SSH), WgcX50 (SSH), WgcX100 (SSH).
uchar bipolar Sets the bipolar/unipolar mode. Bipolar is 0 for unipolar mode and non-zero for bipolar mode.
uchar rising Specifies whether the trigger is rising or falling, or edge-sensitive or level-sensitive. Valid values are:

WcrRisingEdge, WcrFallingEdge, WcrAboveLevel, WcrBelowLevel.
float level Sets the trigger level in volts.
float hysteresis Sets the level in positive volts above (falling) or below (rising) the trigger level that a signal must

exceed before the trigger is armed.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetTrigComplex, wbkSetTrigHardware

Program References ADCEX6

wbkSetTrigAnalog sets the trigger source to any one of the analog input channels in the system.
Only the hardware of channel one is designed to perform automatic level triggering. Using the built-in
digital signal processor, this command allows any analog input channel to trigger the system. Due to
the use of the DSP for level detection, trigger latency is greater than the hardware triggering of channel
one. Since the specified channel does not need to be part of the configured scan, this command fully
describes the characteristics of the desired trigger channel.

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-21

wbkSetTrigComplex
Prototype wbkSetTrigComplex(uint *chans, uchar *gains, uchar *bipolar, uchar *rising,

float *levels, float *hysteresis, uint count, char *opstr);
Parameters
uint *chans An array of up to 72 channels. Channel number 1 through 8 are local channels and 9 through 72 are

expansion channels. The high-speed digital input cannot be used as a complex trigger channel.
uchar *gains An array of up to 72 gain codes. Valid codes are: WgcX1, WgcX2, WgcX5, WgcX10, WgcX20 (SSH),

WgcX50 (SSH), WgcX100 (SSH).
uchar *bipolar An array of bipolar flags that can be 0 for unipolar mode and non-zero for bipolar mode.
uchar *rising An array that specifies whether the trigger is rising or falling, or edge-sensitive or level-sensitive.

Rising can be one of the following: WcrRisingEdge, WcrFallingEdge, WcrAboveLevel,
WcrBelowLevel, WcrAfterRisingEdge, WcrAfterFallingEdge, WcrAfterAboveLevel,
or WcrAfterBelowLevel.

float *levels An array of trigger level voltages.
float *hysteresis An array of positive voltages that sets the level above (falling) or below (rising) the trigger level that a

signal must exceed before the trigger is armed.
uint count The number of elements in each of the previous arrays. Valid values: 1 - 72
char *opstr A character string which defines whether each individual analog trigger is ANDed or ORed together to

produce a single complex trigger. If the AND operation is chosen, all individual triggers must be true
for the acquisition to trigger. If the OR operation is chosen, only one channel needs to be true. The
opstr should be “*” for the AND operation or “+” for the OR operation.

Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also
Program References ADCEX5

wbkSetTrigComplex sets the trigger source to a combination of multiple analog input channels in a
boolean equation of ANDs or ORs. Using arrays, a list of channels is characterized which are
independent of the acquisition channel list. The arrays are arranged as follows.

Array
Element

Channel
Number

Gain
Setting

Bipolar/
Unipolar

Rising/
Falling

Voltage
Level

Hysteresis

0 chan(0) gain(0) bipolar(0) edge(0) level(0) hyst(0)
1 chan(1) gain(2) bipolar(1) edge(1) level(1) hyst(1)
2 chan(2) gain(2) bipolar(2) edge(2) level(2) hyst(2)
3 chan(3) gain(3) bipolar(3) edge(3) level(3) hyst(3)
etc. etc. etc. etc. etc. etc. etc.
count-1 chan

(count-1)
gain
(count-1)

bipolar
(count-1)

edge
(count-1)

level
(count-1)

hyst
(count-1)

Each channel in the channel array provides a TRUE or FALSE to the boolean equation that provides
the system trigger signal. Between the channel terms in the equation are either ANDs or ORs,
depending on the operation string parameter.

The same channel can be used in both the trigger channel list and the acquisition channel list. If the
channel is from a WBK11 option card, the gain must be the same for that channel in both lists.

Chan Edge Level Hyst
3 Rising 1.2V 0.02V
4 Rising 2.2V 0.02V
7 Falling -4.0V 0.02V

The following example has an operation parameter of OR and 3 channels in the trigger channel array
with the following Parameters.

The Boolean trigger equation is:

System trigger = (CH3 rising above 1.2V) OR (CH4 rising above 2.2V) OR (CH7 falling below -4.0V)

When any of these terms becomes TRUE, the system trigger becomes TRUE, triggering the system.

Refer to the Operations Guide (chapter 4) for more information on triggering.

Command Reference (Standard API) Chapter 10

10-22 WaveBook User’s Manual

wbkSetTrigHardware
Prototype wbkSetTrigHardware(uchar source, float level);

Parameters
uchar source Specifies the trigger source as WtsSoftware, WtsTTLRise, WtsTTLFall, WtsAnalogRise and

WtsAnalogFall.
float level The analog level in volts.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetTrigAnalog, wbkSetTrigComplex

Program References ADCEX2, ADCEX3, ADCEX4, ADCEX7, ADCEX8

wbkSetTrigHardware selects one of 5 hardware-based trigger sources for high speed system
triggering. The trigger sources are a rising or falling analog input on channel 0, a rising or falling TTL
input, or a software command from the PC.

wbkSetUserCalConstants
Prototype wbkSetUserCalConstants (uint chan, uchar gain, uchar bipolar,uint

gainConstant, int offsetConstant);
Parameters
uint chan Channel to change cal constants.
uchar gain Gain to change cal constants.
uchar bipolar Range to change cal constants.
uint gainConstant Gain calibration constant (gain times 0x8000).
int offsetConstant Offset calibration constant (1 LSB = 0x0010).
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkWriteUserCalConstants, wbkSetCalTable

Program References None

wbkSetUserCalConstants sets the user accessible calibration constants.

The user calibration constants are gains and offsets that are applied to the input data. The data comes
in, is multiplied by the gain, then the offset is added to it. The resulting data is the conversion between
the raw A/D data and the data that is presented during the acquisition. Each channel, gain, and
bipolar/unipolar setting has a different pair of gain and offset values. The first three parameters of the
wbkSetUserCalConstants function specify which set of constants are to be changed. The last
two Parameters are the actual constants. These constants are in a particular binary format. The gain
constant is 32768 times the gain. For a gain of ×1 the gain constant is 32768 or 0x8000. The
maximum gain is approximately ×2 (65535/32768) and the minimum gain is ×0 (0/32768). The offset,
which is a left-justified signed 12-bit number, is added to the final result. A single least-significant bit
has an integer value of 16 or 0x0010. Setting the calibration constants affect subsequent acquisitions
until another wbkInit is performed. Once wbkInit is performed, the original calibration constants
are re-read from the NVRAM in the WaveBook and connected expansion chassis and the working copy
as set by wbkSetUserCalConstants is overwritten.

wbkSoftTrig
Prototype wbkSoftTrig(void);

Parameters None
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetTrigHardware

Program References ADCEX2, ADCEX3, ADCEX4, ADCEX7, ADCEX8

wbkSoftTrig - When the trigger source has been set to WtsSoftware by the
wbkSetTrigHardware command, the issuance of this command causes the system trigger to be
satisfied. This command can also be used to force a trigger, even if the trigger source was set to
something other than WcsSoftware.

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-23

wbkStopBack
Prototype wbkStopBack(void);

Parameters None
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkBufferTransfer

Program References None

wbkStopBack aborts an active background transfer.

wbkWriteUserCalConstants
Prototype wbkWriteUserCalConstants (uint chan);

Parameters
uint chan The channel number which is contained in the chassis for which constants are to be written.
Returns An error number, or 0 if no error (see Error Code table at end of this chapter).
See Also wbkSetUserCalConstants

Program References None

wbkWriteUserCalConstants writes the working copy of the calibration constants (as set by the
wbkSetUserCalConstants command) into the NVRAM. Similar to the
wbkGetChannelCount command, writing to any channel in a specific chassis writes all the
calibration constants for all the channels in that chassis.

Command Reference (Standard API) Chapter 10

10-24 WaveBook User’s Manual

API Reference Tables
These tables provide information for programming with the WaveBook/512 Application Programming
Interface. The tables are organized as follows:

API Parameter Reference Tables
Table Title Page
Parallel Port Protocols 11-24
LPT Channels 11-24
IRQ Settings 11-24
Hardware Trigger Sources 11-25
Multi-Channel Trigger Types 11-25
Acquisition Modes 11-25
Main-Chassis and Option-Card Channel Types 11-25
Calibration Input Sources 11-25
Gain Codes 11-26
Channel Information Codes 11-26
Disk File Open Modes 11-26
WBK Channel Option Type Definitions 11-26
WBK Module Option Value Definitions 11-27
API Error Codes 11-28

Parallel Port Protocols
Description Value Description
WbkProtocolNone 0 Communications not established
WbkProtocol8 1 Standard LPT Port 8-bit mode
WbkProtocol4 2 Standard LPT Port 4-bit mode
WbkProtocolFPort 10 Far Point F/Port EPP mode
WbkProtocolSL 20 Generic 82360 SL EPP mode
WbkProtocolSM666 30 SMC 37C666 EPP mode
WbkProtocolEPPBIOS 40 EPP bios mode
WbkProtocolFastEPP 50 Fast EPP mode

LPT Channels
Description Value
LPT1 0
LPT2 1
LPT3 2
LPT4 3

IRQ Settings
Description Value
IRQ2 2
IRQ3 3
IRQ4 4
IRQ5 5
IRQ6 6
IRQ7 7

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-25

Hardware Trigger Sources
Definition Value Trigger Source
WtsSoftware 0 Software (wbkSoftTrig)
WtsTTLRise 1 External TTL rising edge
WtsTTLFall 2 External TTL falling edge
WtsAnalogRise 3 Channel 1 rising above a setpoint
WtsAnalogFall 4 Channel 1 falling below a setpoint

Multi-Channel Trigger Types
Definition Value Trigger Type
WctRisingEdge 0 Rising-edge trigger
WctFallingEdge 1 Falling-edge trigger
WctAboveLevel 2 Above level trigger
WctBelowLevel 3 Below level trigger
WctAfterRisingEdge 4 After rising-edge trigger
WctAfterFallingEdge 5 After falling-edge trigger
WctAfterAboveLevel 6 After above-level trigger
WctAfterBelowLevel 7 After below-level trigger

Acquisition Modes
Definition Value Acquisition Mode
WamNShot 0 N-Shot after trigger
WamNShotRearm 1 N-Shot after trigger with automatic re-arm
WamPrePost 2 Pre-trigger / Post-trigger
WamInfinitePost 3 Infinite post-trigger

Main-Chassis and Option-Card Channel Types
Definition Value Description
WmctNone 0 Channel does not exist.
WmctWbk512 1 WaveBook/512 channel
WmctWbk10 2 WBK10 channel
WmctWbk14 3 WBK14 channel
WmctWbk15 4 WBK15 channel
WoctNone 0 Channel does not exist or no option installed in channel.
WoctWbk11 1 WBK11 sample and hold channel
WoctWbk12 2 WBK12 filter card
WoctWbk13 3 WBK13 filter/SSH card

Calibration Input Sources
Definition Value Description
WciNormal 0 Samples the external input
WciCalGnd 1 Samples the 0 volt calibration input
WciCal5V 2 Samples the 5 volt calibration input
WciCal500mV 3 Samples the 0.5 volt calibration input(requires WBK11)

Command Reference (Standard API) Chapter 10

10-26 WaveBook User’s Manual

Gain Codes
Description Value
WgcX1 0
WgcX2 1
WgcX5 2
WgcX10 3
WgcX20 4 (requires WBK11)
WgcX50 5 (requires WBK11)
WgcX100 6 (requires WBK11)

Channel Information Codes
Definition Value Description
WinfoLastChangedDate 0 Retrieve the date that the contents of the non-volatile memory was

last written
WinfoLastChangedTime 1 Retrieve the time that the contents of the non-volatile memory was

last written

Disk File Open Modes
Definition Value Description
WfdAppendFile 0 Append data to the end of an existing file, if any
WfdWriteFile 1 Overwrite an existing file, if any
WfdCreateFile 2 Create a new file, or report an error if file exists

WBK Channel Option Type Definitions
Definition Value Description
Wbk12
WcotWbk12FilterCutOff 0 Value: 400 Hz - 100 kHz

Valid only for channels 1 and 5
Channel 1 controls channels 1 - 4
Channel 5 controls channels 5 - 8

WcotWbk12FilterType 1 Enumeration - Elliptic, Linear Phase
WcotWbk12FilterMode 2 Enumeration - Filter On, Filter Bypassed
WcotWbk12PreFilterMode 3 Enumeration - Default, Override
Wbk13
WcotWbk13FilterCutOff 0 Value: 400 Hz - 100 kHz

Valid only for channels 1 and 5
Channel 1 controls channels 1 - 4
Channel 5 controls channels 5 - 8

WcotWbk13FilterType 1 Enumeration - Elliptic, Linear Phase
WcotWbk13FilterMode 2 Enumeration - Filter On, Filter Bypassed
WcotWbk13PreFilterMode 3 Enumeration - Default, Override
Wbk14
WcotWbk14LowPassMode 0 Enumeration - Bypass, On
WcotWbk14LowPassCutOff 1 Value: 30Hz - 100 kHz
WcotWbk14HighPassCutOff 2 Enumeration - 0.1 Hz, 10 Hz
WcotWbk14CurrentSrc 3 Enumeration - Off, 2 mA, 4 mA
WcotWbk14PreFilterMode 4 Enumeration - Default, Override

Chapter 10 Command Reference (Standard API)

WaveBook User’s Manual 10-27

WBK Module Option Type Definitions
Wbk14 Definition Value Description
WmotWbk14ExcSrcWaveform 0 Enumeration - Sine, Random
WmotWbk14ExcSrcFreq 1 Value: 20 - 100,000 Hz
WmotWbk14ExcSrcAmplitude 2 Value: 0 - 10 Vp-p for sine waveform; 0 - 1.7 Vrms for

random waveform
WmotWbk14ExcSrcOffset 3 Value: -5.0 to +5.0 V

WBK Channel Option Value Definitions
Definition Values
Wbk12
WcotWbk12FilterType WcovWbk12FilterElliptic, WcovWbk12FilterLinearPhase
WcotWbk12FilterMode WcovWbk12FilterBypass, WcovWbk12FilterOn
WcotWbk12AntiAliasMode WcovWbk12PreFilterDefault, WcovWbk12PreFilterOff
Wbk13
WcotWbk13FilterType WcovWbk13FilterElliptic, WcovWbk13FilterLinearPhase
WcotWbk13FilterMode WcovWbk13FilterBypass, WcovWbk13FilterOn
WcotWbk13AntiAliasMode WcovWbk13PreFilterDefault, WcovWbk13PreFilterOff
Wbk14
WcotWbk14CurrentSrc WcovWbk14CurrentSrcOff, WcovWbk14CurrentSrc2mA,

WcovWbk14CurrentSrc4mA
WcotWbk14HighPassCutOff WcovWbk14HighPass0_1Hz, WcovWbk14HighPass10Hz
WcotWbk14LowPassMode WcovWbk14LowPassBypass, WcovWbk14LowPassOn
WcotWbk14AntiAliasMode WcovWbk14PreFilterDefault, WcovWbk14PreFilterOff

WBK Module Option Value Definitions
Wbk14 Definition Values
WmotWbk14ExcSrcWaveform WmovWbk14WaveformSine, WmovWbk14WaveformRandom

Command Reference (Standard API) Chapter 10

10-28 WaveBook User’s Manual

API Error Codes

Error
Decimal
Code

Hex
Code Description

WerrNoError 0 00H No error
WerrBadChannel 1 01H Specified LPT channel was out-of-range
WerrNotOnLine 2 02H Requested WaveBook is not on-line
WerrNoWaveBook 3 03H WaveBook is not on the requested channel
WerrBadAddress 4 04H Bad function address
WerrFIFOFull 5 05H FIFO Full detected, possible data corruption
WerrOutofMemory 6 06H Memory allocation error
WerrInvFreq 16 10H Invalid frequency or period parameter
WerrInvCalInput 17 11H Invalid calibration input
WerrInvChan 18 12H Invalid channel
WerrInvCount 19 13H Invalid count parameter
WerrInvGain 20 14H Invalid channel gain parameter
WerrInvOpstr 21 15H Invalid complex trigger operation string
WerrArmed 22 16H Attempt to reconfigure an acquisition while still active
WerrDspCommFailure 23 17H Communications with the WaveBook DSP failed
WerrEepromCommFailure 24 18H Communications with the WaveBook EEPROM failed
WerrInvTrigSource 25 19H Invalid trigger source parameter
WerrTimeout 26 1AH A time-out occurred during a foreground read operation
WerrInvMode 27 1BH Invalid acquisition mode parameter
WerrInvTrigLevel 28 1CH Invalid trigger level parameter
WerrTypeConflict 29 1DH A number >255 or <0 was passed to a function requiring an

unsigned character (0-255)
WerrMultBackXfer 30 1EH A second background transfer was requested
WerrOverrun 31 1FH ADC data acquired too fast, but all data is valid
WerrInvDigAddress 32 20H Invalid digital I/O address
WerrInvCalConstant 33 21H Out-of-range user Cal Constant
WerrInvComplexTrig 34 22H Invalid complex trigger type
WerrInvIntLevel 35 23H Invalid interrupt level specified
WerrFileOpenErr 36 24H Error opening specified disk file
WerrFileWriteErr 37 25H Error writing specified disk file
WerrUserOverrun 38 26H User-supplied buffer overrun (cycle mode)
WerrInvTimeout 39 27H Invalid time-out value
WerrInvInfo 40 28H Invalid channel information selector
WerrInvOptionType 41 29H Invalid channel option type
WerrInvOptionValue 42 2AH Invalid channel option value

Enhanced API Programming Models (WaveBook) 11

WaveBook User’s Manual 11-1

Overview
The enhanced Application Programming Interface (API) allows you to create custom software to satisfy
your WaveBook data acquisition requirements. Chapters 11 and 12 give you the basic concepts and
details to write effective programs. Chapter 12 describes the API functions in detail. This chapter
explains how to combine those functions into useful routines and is divided into 3 parts:

• Data Acquisition Environment outlines related concepts and defines system capabilities the
programmer must work with (the API, hardware features, and signal management).

• Programming Models explains the sequence and type of operations necessary for data
acquisition. These models provide the software building blocks to develop more complex and
specialized programs. The description for each model has a flowchart and example program
excerpt.

• Summary Guide of Selected API Functions is an easy-to-read table that describes when to use
the basic API functions.

Note: The WaveBook enhanced API is a subset of the DaqX API which provides a common interface
for 32-bit data acquisition applications (WaveBook, DaqBook, DaqBoard, Daq PC-Card, etc).
This manual describes the commands that pertain to the WaveBook.

Data Acquisition Environment
In order to write effective data acquisition software, programmers must understand:

• Software tools (the API documented in this manual and the programming language—you may
need to consult documentation for your chosen language)

• Hardware capabilities and constraints
• General concepts of data acquisition and signal management

Application Programming Interface (API)
The API includes all the software functions needed for building a data acquisition system with the
hardware described in this manual. Chapter 12 (WaveBook Command Reference—Enhanced API)
supplies the details about how each function is used (parameters, hardware applicability, etc). In
addition, you may need to consult your language and computer documentation.

Enhanced vs Standard API
Major differences between the enhanced and standard APIs were described in the introductory chapter.
Language support varies as follows:

• The enhanced API (32-bit only) accommodates C, Visual Basic, and Delphi.
• The standard API accommodates C (16- or 32-bit), QuickBASIC (16-bit only), Visual Basic

(16- or 32-bit), and Turbo Pascal 7 (16-bit only).
Note: Coding for the enhanced and standard API cannot be used together; enhanced and standard
models are slightly different (this chapter is for the enhanced API models; chapters 6 to 9 demonstrate
examples using the standard API).

Hardware Capabilities and Constraints
To program the system effectively, you must understand your hardware capabilities. Obviously you
cannot program the hardware to perform beyond its design and specifications, but you also want to take
full advantage of the system’s power and features. You may need to refer to sections that describe your
hardware’s capability. In addition, you may need to consult your computer documentation. In some
cases, you may need to verify the hardware setup, use of channels, and signal conditioning options
(some hardware devices have jumpers and DIP switches that must match the programming, especially
as the system evolves).

Enhanced API Programming Models (WaveBook) Chapter 11

11-2 WaveBook User’s Manual

Signal Environment
Important data acquisition concepts for programmers are listed here and explained in the chapter
Operation Guide (4). You must apply these concepts as needed in your situation. Some of these
concepts include:

• Device and parameter identification. Refer to the related reference tables in chapter 12.
• Scan rates and sequencing. With multiple scans, the time between scans becomes a parameter.

This time can be a constant or can be dependent upon a trigger.
• Triggering options. Triggering starts the A/D conversion. The trigger can be an external

analog or TTL trigger or a program-controlled software trigger. Refer to the trigger functions in
chapter 12 and Triggering Capabilities in chapter 4.

• Foreground/background. Foreground transfer routines require the entire transfer to occur
before returning control to the application program. Background routines start the A/D
acquisition and return control to the application program before the transfer occurs. Data is
transferred while the application program is running. Data will be transferred to the user
memory buffer during program execution in 1 sample or 2048 sample blocks, depending on the
configuration. The programmer must determine what tasks can proceed in the background while
other tasks perform in the foreground and how often the status of the background operations
should be checked.

Parameters in the various A/D routines include: number of channels, number of scans, start of
conversion triggering, timing between scans, and mode of data transfer. Channels sampled in a scan
can be consecutive or non-consecutive with the same or different gains. The scan sequence makes no
distinction between local and expansion channels.

Basic Models
This section outlines basic programming steps commonly used for data acquisition. Consider the
models as building blocks that can be put together in different ways or modified as needed. As a
general tutorial, these examples use Visual Basic since most programmers know BASIC and can
translate to other languages as needed. The enhanced API programming models discussed in this
chapter include:

Model Type Model Name Page
Configuration Initialization and Error Handling 11-3
Acquisition Foreground Acquisition with One-Step Commands

Counted Acquisition Using Linear Buffers
Indefinite Acquisition, Direct-To-Disk Using Circular Buffers
Multiple Hardware Scans, Software Triggering
Background Acquisition
Complex Triggering

11-5
11-7
11-9
11-12
11-14
11-16

Data Handling Data Packing and Rotating
Double Buffering
Direct-to-Disk Transfers
Transfers With Driver-Allocated Buffers

11-18
11-20
11-22
11-25

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-3

Initialization and Error Handling
This section demonstrates how to initialize the Daq*
and use various methods of error handling. Most of the
example programs use similar coding as detailed here.
Functions used include:

• • VBdaqOpen&(daqName$)

• • VBdaqSetErrorHandler&(errHandler&)

• • VBdaqClose&(handle&)

All Visual Basic programs should include the DaqX.bas
file into their project. The DaqX.bas file provides the
necessary definitions and function prototyping for the
DAQX driver DLL.

handle& = VBdaqOpen&(“WaveBook0”)
ret& = VBdaqClose&(handle&)

The Daq* device is opened and initialized with the daqOpen function. daqOpen takes one
parameter—the name of the device to be opened. The device name information can be accessed or
changed via the Daq* Configuration utility located in the operating system’s Control Panel. The
daqOpen call, if successful, will return a handle to the opened device. This handle may then be used
by other functions to configure or perform other operations on the device. When operations with the
device are complete, the device may then be closed using the daqClose function. If the device could
not be found or opened, daqOpen will return -1.

The DAQX library has a default error handler defined upon loading. However; if it is desirable to
change the error handler or to disable error handling, then the daqSetErrorHandler function may
be used to setup an error handler for the driver. In the following example the error handler is set to 0
(no handler defined) which disables error handling.

ret& = VBdaqSetErrorHandler&(0&)

If there is a Daq* error, the program will continue. The function’s return value (an error number or 0 if
no error) can help you debug a program.

If (VBdaqOpen&(“WaveBook0”) < 0) Then
 “Cannot open DaqBook0”

Daq* functions return daqErrno&.

Print “daqErrno& : ”; HEX$(daqErrno&)
End If

The next statement defines an error handling routine that frees us from checking the return value of
every Daq* function call. Although not necessary, this sample program transfers program control to a
user-defined routine when an error is detected. Without a Daq* error handler, Visual Basic will receive
and handle the error, post it on the screen and terminate the program. Visual Basic provides an integer
variable (ERR) that contains the most recent error code. This variable can be used to detect the error
source and take the appropriate action. The function daqSetErrorHandler tells Visual Basic to
assign ERR to a specific value when a Daq*error is encountered. The following line tells Visual Basic
to set ERR to 100 when a Daq*error is encountered. (Other languages work similarly; refer to specific
language documentation as needed.)

handle& = VBdaqOpen&(“WaveBook0”)
ret& = VBdaqSetErrorHandler&(handle&, 100)

 On Error GoTo ErrorHandler

The On Error GoTo command in Visual Basic allows a user-defined error handler to be provided,
rather than the standard error handler that Visual Basic uses automatically. The program uses On
Error GoTo to transfer program control to the label ErrorHandler if an error is encountered.

Daq* errors will send the program into the error handling routine. This is the error handler. Program
control is sent here on error.

Enhanced API Programming Models (WaveBook) Chapter 11

11-4 WaveBook User’s Manual

ErrorHandler:

 errorString$ = "ERROR in ADC1"
 errorString$ = errorString$ & Chr(10) & "BASIC Error :" + Str$(Err)
 If Err = 100 Then errorString$ = errorString$ & Chr(10) & "DaqBook
Error : " + Hex$(daqErrno&)

 MsgBox errorString$, , "Error!"

End Sub

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-5

Foreground Acquisition with One-Step Commands
This section shows the use of several one-step analog
input routines. These commands are easier to use than
low-level commands but less flexible in scan
configuration. These commands provide a single
function call to configure and acquire analog input data.
This example demonstrates the use of the 4 Daq*’s one-
step ADC functions. Functions used include:

• • VBdaqAdcRd&(handle&,chan&, sample%,
gain&)

• • VBdaqAdcRdN&(handle&,chan&, Buf%(),
count&, trigger%, level%, freq!,
gain&,flags&)

• • VBdaqAdcRdScan&(handle&,startChan&,
endChan&, Buf%(), gain&, flags&)

• • VBdaqAdcRdScanN&(handle&,startChan&,
endChan&, Buf%(), count&,
triggerSource&, level%, freq!,
gain&, flags&)

This program will initialize the Daq* hardware, then
take readings from the analog input channels in the base
unit (not the expansion cards). First, some constants
need to be defined and variables dimensioned.

Const freq! = 1000! ‘1000Hz sample rate
Const gain& = DgainX1& ‘gain of x1
Const flags& = DafAnalog&+DafUnipolar& ‘unipolar mode on
Const scans& = 9 ‘number of scans to acquire
Const channels& = 8 ‘number of channels to scan
Const rising& = DatdRisingEdge ‘XXXX I have no idea
Const HYSTERESIS& = 0.1 ‘with a hysteresis of .1
Dim buf%(scans& * channels&) ‘array buffer to hold data
Dim handle& ‘handle for WaveBook device
Dim i&, j& ‘counter variables
Dim sample% ‘hold a single reading
Dim ret& ‘function return value

The following code assumes that the Daq* device has been successfully opened and the handle&
value is a valid handle to the device. All the following one-step functions define the channel scan
groups to be bipolar input channels. Specifying this configuration uses the DafAnalog and the
DafUnipolar values in the flags parameter. The flags parameter is a bit-mask field in which
each bit specifies the characteristics of the channel(s) specified. In this case, the DafAnalog and the
DafUnipolar values are added together to form the appropriate bit mask for the specified flags
parameter.

The next line requests 1 reading from 1 channel with a gain of ×1. The gain& constant is defined as
DgainX1&, defined constant from DaqX.bas and included at the beginning of this program. Likewise,
the flags& constant parameter is defined to be the sum of the DafAnalog and DafUnipolar flags,
which are also defined in DaqX.bas.

ret& = VBdaqAdcRd&(handle& 1, sample%, gain&, flags&)
Print Format$“& ####”; “Result of AdcRd:”; sample%(0)

The next line requests 10 readings from channel 1 at a gain of ×1, using immediate triggering at 1 kHz.

ret& = VBdaqAdcRdN&(handle&,1, buf%(), scans&, DatsImmediate&, rising&,
0!, freq!, gain&, flags&)

Print “Results of AdcRdN: ”;
For x& = 0 To 9
 Print Format$ “#### ”; buf%(x&);

Next x&

Enhanced API Programming Models (WaveBook) Chapter 11

11-6 WaveBook User’s Manual

The program will then collect one sample of channels 1 through 8 using the VBdaqAdcRdScan
function.

ret& = VBdaqAdcRdScan&(handle&,1, channels&, buf%(), DgainX1&,
DafAnalog&+DafUnipolar&)

Print “Results of AdcRdscan:”
For x& = 0 To 7
Print Format$“& # & ####”; “Channel:”; buf%(x); “Data:”; buf%(x)

Next x&: Print

Finally, the program will collect 9 scans from channels 1 through 7 with an immediate trigger, then
display the results.

ret& = VBdaqAdcRdScanN& (handle&, 1, channels&, buf%(), scans&,
DatsImmediate&, rising&, 0!, freq!, gain&, flags&)

For i& = 0 To channels&-1
Print Format$“& # & ####”; “Channel:”; i&+1; “Data:”;

 For j& = 0 To scans&-1
 print Tab(j&*7+17); InttoUint(buf%(j&*channels&+i&));

 next j
 print
next i&

Now to close the device when it’s no longer needed:

ret& = VBdaqAdcClose(handle&)

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-7

Counted Acquisitions Using Linear Buffers
This section sets up an acquisition that
collects post-trigger A/D scans. This
particular example demonstrates the setting
up and collection of a fixed-length A/D
acquisition in a linear buffer.

First, the acquisition is configured by setting
up the channel scan group configuration, the
acquisition frequency, the acquisition trigger
and the acquisition mode. When configured,
the acquisition is then armed by calling the
daqAdcArm function.

At this point, the Daq* device trigger is
armed and A/D acquisition will begin upon
trigger detection. If the trigger source has
been configured to be DatsImmediate&,
A/D data collection will begin immediately.

This example will retrieve 10 samples from
channels 0 through 7, triggered immediately
with a 1000 Hz sampling frequency and unity
gain. Functions used include:

• • VBdaqAdcSetMux&(handle&,
startChan&, endChan&, gain&,
flags&)

• • VBdaqAdcSetFreq&(handle&,freq!)

• • VBdaqAdcSetTrig&(handle&, triggerSource&, rising&, level%,
hysteresis%,channel&)

• • VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,postTrigCount&)

• • VBdaqAdcTransferSetBuffer&(handle&,buf%(), scanCount&, transferMask&)

• • VBdaqAdcTransferStart&(handle&)

• • VBdaqAdcWaitForEvent&(handle&,daqEvent&)

This program will initialize the Daq* hardware, then take readings from the analog input channels in
the base unit (not the expansion cards). The functions used in this program are of a lower level than
those used in the previous section and provide more flexibility.

Const freq!=1000!
Const scans&=10
Dim buf%(BLOCK&*channels&), handle&, ret&, flags&

where

const block& = 6 and
const channels& = 8

The acquisition mode must be configured as a fixed-length acquisition with no pre-trigger scan data
and 10 scans of post-trigger scan data. The mode is set to DaamNShot& to configure a fixed-length
acquisition that will terminate automatically upon the satisfaction of the post-trigger count of 10 (the
value of scans&).

ret& = VBdaqAdcSetAcq&(handle&,DaamNShot&, 0, scans&)

The following function defines the channel scan group. The function specifies a channel scan group
from channel 1 through 8 with all channels being analog unipolar input channels with a gain of ×1.
Specifying this configuration uses DgainX1 in the gain parameter and the DafAnalog and the
DafUnipolar values in the flags parameter. The flags parameter is a bit-mask field in which
each bit specifies the characteristics of the specified channel(s). In this case, the DafAnalog and the
DafUnipolar values are added together to form the appropriate bit mask for the specified flags
parameter.

Enhanced API Programming Models (WaveBook) Chapter 11

11-8 WaveBook User’s Manual

ret& = VBdaqAdcSetMux&(handle&,1, channels&, DgainX1&,
DafAnalog&+DafUnipolar&)

Next, set the internal sample rate to 1 kHz.

ret& = VBdaqAdcSetFreq&(handle&,freq!)

The sample rate will not be exactly 1 kHz; the actual frequency can be checked if necessary by:

ret& = VBdaqAdcGetFreq(handle&, freq!)
The “actual” frequency set will be stored in freq after the function call returns.

The acquisition begins upon detection of the trigger event. The trigger event is configured with
daqAdcSetTrig. The next line defines the trigger event to be the software trigger source which will
start the acquisition upon a call to VBdaqAdcSoftTrig(). The variable DatsSoftware& is a
constant defined in DaqX.bas. Since the trigger source is configured as software, the other trigger
parameters are not needed.

ret& = VBdaqAdcSetTrig&(handle&,DatsSoftware&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. Since this is to be a fixed-length
transfer to a linear buffer, the buffer cycle mode should be turned off with DatmCycleOff&. For
efficiency, block update mode is specified with DatmUpdateBlock&. The buffer size is set to 10
scans. Note: the user-defined buffer must have been allocated with sufficient storage to hold the entire
transfer prior to invoking the following line.

ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), 10,
DatmUpDateBlock&+DatmCycleOff&)

With all acquisition parameters configured, the acquisition can now be armed. Once armed, the
acquisition will begin immediately upon detection of the trigger event. As in the case of the software
trigger, the acquisition will begin immediately upon execution of the daqAdcSoftTrig()function.

ret& = VBdaqAdcArm&(handle&)

After setting up and arming the acquisition, the data is ready to be collected. The following line
initiates an A/D transfer from the WaveBook/Daq* device to the defined user buffer which will begin
after the trigger event is satisfied (upon the completion of the daqAdcSoftTrig() function call).

ret& = VBdaqAdcTransferStart&(handle&)

Now the trigger will start the transfer:

ret& = VBdaqAdcSoftTrig(handle&)
Wait for the transfer to complete in its entirety, then proceed with normal application processing.
This can be accomplished with the daqWaitForEvent command. The daqWaitForEvent
allows the application processing to become blocked until the specified event has occurred.
DteAdcDone, indicates that the event to wait for is the completion of the transfer.

ret& = VBdaqWaitForEvent(handle&,DteAdcDone&)

At this point, the transfer is complete; all data from the acquisition is available for further processing.

Print "Results of Transfer"
For i& = 0 To 10
 Print "Scan "; Format$(Str$(i& + 1), "00"); " -->";
 For j& = 0 To channels& - 1
 Print Format$(IntToUint&(buf%(j&)), "00000"); " ";
 Next j&
 Print
Next i&
Print "R"

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-9

Indefinite Acquisition, Direct-To-Disk Using Circular Buffers
This program demonstrates the use of
circular buffers in cycle mode to collect
analog input data directly to disk. In cycle
mode, this data transfer can continue
indefinitely. When the transfer reaches the
end of the physical data array, it will reset
its array pointer back to the beginning of
the array and continue writing data to it.
Thus, the allocated buffer can be used
repeatedly like a FIFO buffer.

Unlike the Standard API, the Enhanced
API has built-in direct-to-disk
functionality. Therefore, very little needs
to be done by the application to configure
direct-to-disk operations.

First, the acquisition is configured by
setting up the channel scan group
configuration, the acquisition frequency,
the acquisition trigger and the acquisition
mode. Once configured, the transfer to
disk is set up and the acquisition is then
armed by calling the daqAdcArm
function.

At this point, the Daq* device trigger is
armed and A/D acquisition to disk will
begin immediately upon trigger detection.

This example will retrieve an indefinite
amount of scans for channels 0 through 7,
triggered via software with a 3000 Hz
sampling frequency and unity gain.
Functions used include:

• • VBdaqAdcSetScan&(handle&,
startChan&, endChan&,
gain&, flags&)

• • VBdaqAdcSetFreq&(handle&,fr
eq!)

• • VBdaqAdcSetTrig&(handle&, triggerSource&, rising&, level%,
hysteresis%,channel&)

• • VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,postTrigCount&)

• • VBdaqAdcTransferSetBuffer&(handle&,buf%(), scanCount&, transferMask&)

• • VBdaqAdcTransferStart&(handle&)

• • VBdaqAdcTransferGetStat&(handle&,status&,retCount&)

• • VBdaqAdcWaitForEvent&(handle&,daqEvent&)

• • VBdaqAdcSetDiskFile&(handle&,filename$,openMode&,preWrite&)

This program will initialize the Daq* hardware, then take readings from the analog input channels in
the base unit (not the expansion cards) and store them to disk automatically. The following lines
demonstrate channel scan group configuration using the daqAdcSetScan command. Note: flags
may be channel-specific.

Dim handle&, ret&, channels&(8), gains&(8) flags&(8)
Dim buf%(80000), active&, count&
Dim bufsize& = 10000 ‘ In scans

Enhanced API Programming Models (WaveBook) Chapter 11

11-10 WaveBook User’s Manual

' Define arrays of channels and gains : 0-7 , unity gain
For x& = 0 To 7
 channels&(x&) = x&
 gains&(x&) = DgainX1&

 flags&(x&) = DafAnalog& + DafSingleEnded& + DafUnipolar&
Next x&

' Load scan sequence FIFO
ret& = VBdaqAdcSetScan&(handle&,channels&(), gains&(), flags&(), 8)

Next, set the internal sample rate to 3 kHz.

ret& = VBdaqAdcSetFreq&(handle&,3000!)

The acquisition mode needs to be configured to be fixed-length acquisition with no pre-trigger scan
data and 10 scans of post-trigger scan data. The mode is set to DaamInfinitePost&, which will
configure the acquisition as having indefinite length and, as such, will be terminated by the application.
In this mode, the pre- and post-trigger count values are ignored.

ret& = VBdaqAdcSetAcq&(handle&,DaamInfinitePost&, 0, 0)

The acquisition begins upon detection of the trigger event. The trigger event is configured with
daqAdcSetTrig. The next line defines the trigger event to be the immediate trigger source which
will start the acquisition immediately. The variable DatsSoftware& is a constant defined in
DaqX.bas. Since the trigger source is configured as immediate, the other trigger parameters are not
needed.

ret& = VBdaqAdcSetTrig&(handle&,DatsSoftware&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. This buffer is necessary to hold
incoming A/D data while it is being prepared for disk I/O. Since this is to be an indefinite-length
transfer to a circular buffer, the buffer cycle mode should be turned on with DatmCycleOn&. For
efficiency, block update mode is specified with DatmUpdateBlock&. The buffer size is set to
10,000 scans. The buffer size indicates only the size of the circular buffer, not the total number of
scans to be taken.

ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), bufsize&,
DatmUpDateBlock&+DatmCycleOn&)

Now the destination disk file is configured and opened. For this example, the disk file is a new file to
be created by the driver. After the following line has been executed, the specified file will be opened
and ready to accept data.

ret& = VBdaqAdcSetDiskFile&(handle&,”c:dasqdata.bin”, DaomCreateFile&, 0)

With all acquisition parameters being configured and the acquisition transfer to disk configured, the
acquisition can now be armed. Once armed, the acquisition will begin immediately upon detection of
the trigger event. As in the case of the immediate trigger, the acquisition will begin immediately upon
execution of the daqAdcArm function.

ret& = VBdaqAdcArm&(handle&)

After setting up and arming the acquisition, data collection will begin upon satisfaction of the trigger
event. Since the trigger source is software, the trigger event will not take place until the application
issues the software trigger event. To prepare for the trigger event, the following line initiates an A/D
transfer from the Daq* device to the defined user buffer and, subsequently, to the specified disk file.
No data is transferred at this point, however.

ret& = VBdaqAdcTransferStart&(handle&)

The transfer has been initiated, but no data will be transferred until the trigger event occurs. The
following line will signal the software trigger event to the driver; then A/D input data will be
transferred to the specified disk file as it is being collected.

ret& = VBdaqAdcSoftTrig&(handle&)

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-11

Both the acquisition and the transfer are now currently active. The transfer to disk will continue
indefinitely until terminated by the application. The application can monitor the transfer process with
the following lines of code:

acqTermination& = 0
Do
 ‘ Wait here for new data to arrive
 ret& = VBdaqWaitForEvent(handle&,DteAdcData&)

 ‘ New data has been transferred - Check status
 ret& = VBdaqAdcTransferGetStat&(handle&,active&,retCount&)

 ‘ Code may be placed here which will process the buffered data or
 ‘ perform other application activities.
 ‘
 ‘ At some point the application needs to determine the event on which
 ‘ the direct-to-disk acquisition is to be halted and set the
 ‘ acqTermination flag.

Loop While acqTermination& = 0

At this point the application is ready to terminate the acquisition to disk. The following line will
terminate the acquisition to disk and will close the disk file.

ret& = VBdaqAdcDisarm&(handle&)

The acquisition as well as the data transfer has been stopped. We should check status one more time to
get the total number of scans actually transferred to disk.

ret& = VBdaqAdcTransferGetStat(handle&,active&,retCount&)

The specified disk file is now available. The retCount& parameter will indicate the total number
of scans transferred to disk.

Enhanced API Programming Models (WaveBook) Chapter 11

11-12 WaveBook User’s Manual

Multiple Hardware Scans, Software Triggering
This model takes multiple scans from several channels. The functions
used here are of a lower level than the one-step functions, and more
control is allowed over the acquisition. This program exemplifies this
flexibility by individually configuring the channels and by explicitly
setting up the transfer buffer.

First, the acquisition is configured by setting up the channel scan group
configuration, the acquisition frequency, the acquisition trigger and the
acquisition mode. Once configured, the transfer is set up and the
acquisition is then armed by calling the daqAdcArm function.

At this point, the WaveBook/Daq* device trigger is armed, and A/D
acquisition will begin immediately upon trigger detection.

This example will retrieve 10 scans for channels 0, 5, and 8, triggered
via software with a 3000 Hz sampling frequency and unity gain.
Functions used include:

• • VBdaqAdcSetScan&(handle&, startChan&, endChan&,
gain&, flags&)

• • VBdaqAdcSetFreq&(handle&,freq!)

• • VBdaqAdcSetTrig&(handle&, triggerSource&,
rising&, level%, hysteresis%,channel&)

• • VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,post
TrigCount&)

• • VBdaqAdcTransferSetBuffer&(handle&,buf%(),
scanCount&, transferMask&)

• • VBdaqAdcTransferStart&(handle&)

• • VBdaqAdcTransferGetStat&(handle&,status&,retCoun
t&)

• • VBdaqAdcWaitForEvent&(handle&,daqEvent&)

This program will initialize the hardware, then take readings from the analog input channels in the base
unit (not the expansion cards). The following lines demonstrate channel scan group configuration
using the daqAdcSetScan command. Note: flags may be channel-specific.

Const freq! = 3000
Const scans& = 10
Const channels& = 3
Dim buf%(scans& * channels&)
Dim chans&(channels&), gains&(channels&), flags&(channels&)

Now set up the desired channels and their individual gains and flags.
chans&(0) = 0 ' high speed digital channel
chans&(1) = 5 ' analog channel 5
chans&(2) = 8 ' analog channel 8
 ' Channel gains and flags setting
 For i& = 0 To channels& - 1
 gains&(i&) = DgainX1& ' unity gain
 flags&(i&) = DafAnalog& + DafSingleEnded& + DafUnipolar&
 Next i&

Open the device, and set up the error handler. For simplicity, the error handler is not defined explicitly.
Refer to Example 1 for more information.

handle& = VBdaqOpen("WaveBook0")
ret& = VBdaqSetErrorHandler(handle&, 100)
On Error GoTo ErrorHandlerADC3

Now set the scan configuration:
ret& = VBdaqAdcSetScan&(handle&,chans&(), gains&(), flagss&(), channels&)

Next, set the internal sample rate to 3 kHz.
ret& = VBdaqAdcSetFreq&(handle&,3000!)

The acquisition mode needs to be configured to be a fixed-length acquisition with no pre-trigger scan
data and 10 scans of post-trigger scan data. The mode is set to DaamNShot&, which will configure

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-13

the acquisition as having finite length and, as such, will be terminated when the post-trigger count has
been satisfied. Once finished, the acquisition is automatically disarmed.

ret& = VBdaqAdcSetAcq&(handle&,DaamNShot&, 0, scans&)

The acquisition begins upon detection of the trigger event. The trigger event is configured with
daqAdcSetTrig. The next line defines the trigger event to be the immediate trigger source which
will start the acquisition immediately. The variable DatsSoftware& is a constant defined in
DaqX.bas. Since the trigger source is configured as software, the other trigger parameters are not
needed.

ret& = VBdaqAdcSetTrig&(handle&,DatsSoftware&, 0, 0, 0, 0)

A buffer now is configured to hold the A/D data to be acquired. Since a circular buffer will not be
used, the buffer cycle mode should be turned off with DatmCycleOff&. The single update mode is
specified with DatmUpdateSingle&. The buffer size is set to 10, the number of scans.

ret& = VBdaqAdcTransferSetBuffer&(handle&,buf%(), scans&,
DatmUpDateSingle&+DatmCycleOff&)

With all acquisition parameters and the transfer configured, the acquisition can now be armed. Once
armed, the acquisition will begin immediately upon detection of the trigger event. As in the case of the
immediate trigger, the acquisition will begin immediately upon execution of the daqAdcArm function.

ret& = VBdaqAdcArm&(handle&)

After setting up and arming the acquisition, data collection will begin upon satisfaction of the trigger
event. Since the trigger source is software, the trigger event will not take place until the application
issues the software trigger event. To prepare for the trigger event, the following line initiates an A/D
transfer from the Daq* device to the defined user buffer. No data is transferred at this point, however.

ret& = VBdaqAdcTransferStart&(handle&)

The transfer has been initiated, but no data will be transferred until the trigger event occurs. The
following line will signal the software trigger event to the driver.

ret& = VBdaqAdcSoftTrig&(handle&)

Both the acquisition and the transfer are now currently active. The transfer will continue indefinitely
until terminated by the application. The application can monitor the transfer process with the following
lines of code:

ret& = VBdaqWaitForEvent(handle&, DteAdcDone&)
Once this function returns, the acquisition as well as the data transfer has been stopped. We should
check the status one more time to get the total number of scans actually transferred to disk.

ret& = VBdaqAdcTransferGetStat(handle&,active&,retCount&)
Finally, display the results and close the device.

Print "Results of BufferTransfer:"
 Print " Digital_ch_0 Analog_ch_5 Analog_ch_8"
 For i& = 0 To scans& - 1
 ' shift the upper (valid) 8 bits of the digital input to the lower
8 bits

 buf%(i& * channels&) = ((buf%(i& * channels&) And &HFF00) \ 256)
And &HFF

 Print "Scan"; i& + 1; "Data:";
 For j& = 0 To channels& - 1
 Print Tab(j& * 14 + 17); buf%(i& * channels& + j&);
 Next j&
 Print
 Next i&
 ret& = VBdaqClose(handle&)

Enhanced API Programming Models (WaveBook) Chapter 11

11-14 WaveBook User’s Manual

Background Acquisition
This example reads scans from several channels into a user-allocated
buffer in the background. Functions used include:

• • VBdaqAdcArm&(handle&)

• • VBdaqAdcSetAcq&(handle&, DaamNShot&, 0,
scans&)

• • VBdaqAdcSetFreq&(handle&, freq#)

• • VBdaqAdcSetMux&(handle&, 1, channels&,
DgainX1&, 1)

• • VBdaqAdcSetTrig&(handle&, DatsSoftware&,
0,0,0,0)

• • VBdaqAdcSoftTrig&(handle&)

• • VBdaqAdcTransferGetStat&(handle&, active&,
retCount&)

• • VBdaqAdcTransferSetBuffer(handle&, buf%(),
scans&, DatmCycleOff& + DatmUpdateSingle&)

• • VBdaqAdcTransferStart(handle&)

• • VBdaqClose(handle&)

• • VBdaqOpen("WaveBook0")

• • VBdaqSetErrorHandler(handle&, 100)

The constants used are defined as follows:
Const channels& = 8
Const scans& = 9
Const freq# = 200

As usual, the device is opened and the error handler set up:
handle& = VBdaqOpen("WaveBook0")
ret& = VBdaqSetErrorHandler(handle&, 100)
On Error GoTo ErrorHandlerADC4

The acquisition is configured for 9 post-trigger scans and Nshot
mode:

ret& = VBdaqAdcSetAcq&(handle&, DaamNShot&, 0,
scans&)

Set up the scan configuration for channels 1 to 9 with a gain of ×1:

ret& = VBdaqAdcSetMux&(handle&, 1, channels&,
DgainX1&, 1)

Set the post-trigger scan rates:

ret& = VBdaqAdcSetFreq&(handle&, freq#)
Set the trigger source to a software trigger command; the other
trigger parameters are not needed with a software trigger.

ret& = VBdaqAdcSetTrig&(handle&, DatsSoftware&,
0,0,0,0)

Arm the acquisition:

ret& = VBdaqAdcArm&(handle&)
Now to set up the buffer for a background acquisition in update-single mode with cycle-mode off:

ret& = VBdaqAdcTransferSetBuffer(handle&, buf%(), scans&, DatmCycleOff& +
DatmUpdateSingle&)

Start the transfer, and trigger to begin transferring data:
ret& = VBdaqAdcTransferStart(handle&)
ret& = VBdaqAdcSoftTrig&(handle&)

These next few lines wait for the first data to be received, by checking the retCount value after
calling daqAdcTransferGetStat():

retCount& = 0
 While retCount& = 0
 ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)
 Wend

With the same function, wait for the acquisition to complete:

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-15

While active& <> 0
 ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)
Wend
Print "Acquisition complete:"; retCount&; "scans acquired."

Now the data can be displayed or manipulated:
Print "Data acquired:"
 For i& = 0 To channels& - 1
 Print "Channel"; i& + 1; "Data:";
 For j& = 0 To scans& - 1
 Print Tab(j& * 7 + 17); buf%(j& * channels& + i&);
 Next j&
 Print
 Next i&

Finally, close the device:
ret& = VBdaqClose(handle&)

Enhanced API Programming Models (WaveBook) Chapter 11

11-16 WaveBook User’s Manual

Complex Triggering
This example takes multiple scans from hardware using a complex
analog trigger. The acquisition will start on a rising-edge of channel 1
at 2 volts OR a falling-edge on channel 2 at 3 volts.

Functions used include:
• • VBdaqAdcSetAcq&(handle&,mode&,preTrigCount&,po

stTrigCount&)
• • VBdaqAdcSetMux&(handle&, startChan&, endChan&,

gain&, flags&)
• • VBdaqAdcSetTrig&(handle&, triggerSource&,

rising&, level%, hysteresis%,channel&)
• • VBdaqAdcSetFreq&(handle&, freq!)
• • VBdaqAdcArm&(ByVal handle&, ByVal deviceType&)
• • VBdaqAdcTransferSetBuffer&(handle&,

deviceType&, chan&, buf%(), scanCount&,
transferMask&)

• • VBdaqAdcTransferStart&(handle&)
• • VBdaqAdcSoftTrig&(handle&)
• • VBdaqAdcTransferGetStat(handle&, active&,

retCount&)
• • VBdaqAdcClose(handle&)

The constants used in this example are defined as follows:

Const freq! = 1000
Const scans& = 9
Const channels& = 3
Const NUM_TRIG& = 2

Arrays are dimensioned for configuring individual channels:

Dim chan&(NUM_TRIG&)
Dim gains&(NUM_TRIG&), polarity&(NUM_TRIG&)
Dim rising&(NUM_TRIG&)
Dim levels%(NUM_TRIG&), HYSTERESIS%(NUM_TRIG&)

Initialize these arrays which can specify individual settings for each channel:

 chan&(0) = 1
 gains&(0) = DgainX1&
 polarity&(0) = 1
 rising&(0) = DatdRisingEdge&
 levels%(0) = 2
 HYSTERESIS%(0) = 0.1

 chan&(1) = 2
 gains&(1) = DgainX1&
 polarity&(1) = 1
 rising&(1) = DatdFallingEdge&
 levels%(1) = 3
 HYSTERESIS%(1) = 0.1

Now, to open the WaveBook and specify the error handler:

handle& = VBdaqOpen("WaveBook0")
ret& = BdaqSetErrorHandler(handle&, 100)
On Error GoTo ErrorHandlerADC5

Set up the acquisition for Nshot, with 0 pre-trigger scans and 9 post-trigger scans.

ret& = VBdaqAdcSetAcq&(handle&, DaamNShot&, 0, scans&)
Set the scan configuration to channels 1 through 3, with a gain of ×1, and the flags parameter
specifying unipolar analog mode.

ret& = VBdaqAdcSetMux&(handle&, 1, channels&, DgainX1&,
DafAnalog&+DafUnipolar&)

Set the post-trigger scan rates:

 ret& = VBdaqAdcSetFreq&(handle&, freq!)
Create the buffer to hold the collected data:

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-17

ret& = VBdaqAdcTransferSetBuffer(handle&, buf%(), scans&, DatmCycleOff& +
DatmUpdateSingle&)

Set a complex trigger at channels 1 and 2:

ret& = VBdaqAdcSetTrigEnhanced&(handle&, rising&(1),gains&(0),ranges&(0),
DetsFallingEdge,levels(0)%,HYSTERESIS%(1), chan&(0))

VBdaqAdcSetTrigEnhanced() is used in place of VBdaqAdcSetTrig(). It defines the
complex trigger event that will initiate the acquisition. Since it can configure independant trigger
events on multiple channels, arrays of the parameters are given as arguments with each index referring
to a specific channel.

Start the transfer:
ret& = VBdaqAdcTransferStart()

Arm the acquisition; data transfer will begin upon detection of the trigger event defined by:

 ret& = VBdaqAdcArm&(handle&)
Wait for the transfer to end:

 ret& = VBdaqWaitForEvent(handle&, DteAdcDone&)
Results can now be displayed or otherwise manipulated:

Print "Results of BufferTransfer:"
 For i& = 0 To channels& - 1
 Print "Channel"; i& + 1; "Data:";
 For j& = 0 To scans& - 1
 Print Tab(j& * 7 + 17); buf%(j& * channels& + i&);
 Next j&
 Print
 Next i&

Close the device when finished:

 ret& = VBdaqClose(handle&)

Enhanced API Programming Models (WaveBook) Chapter 11

11-18 WaveBook User’s Manual

Data Packing and Rotating
This section demonstrates an acquisition made up of pre-trigger and
post-trigger scans from multiple channels using a DSP-based analog
trigger. It also uses data packing and rotating. Functions used
include:

• • VBdaqAdcArm&(handle&)

• • VBdaqAdcSetAcq&(handle&, DaamNShot&, 0,
scans&)

• • VBdaqAdcSetFreq&(handle&, POST_freq!)

• • VBdaqAdcSetRawDataFormat(handle&, DadfPacked&)

• • VBdaqAdcSetScan&(handle&, chans&(), gains&(),
polarities&(), channels&)

• • VBdaqAdcSetTrig&(handle&, DatsHardwareAnalog&,
rising&, level%, HYSTERESIS%, chans&(0))

• • VBdaqAdcSoftTrig&(handle&)

• • VBdaqAdcTransferGetStat&(handle&, active&,
retCount&)

• • VBdaqAdcTransferSetBuffer(handle&, buf%(),
BLOCK&, DatmCycleOff& + DatmUpdateSingle&)

• • VBdaqAdcTransferStart(handle&)

• • VBdaqClose(handle&)

• • VBdaqCvtRawDataFormat&(buf%(), DacaUnpack,
retCount&, BLOCK&, channels&)

• • VBdaqOpen("WaveBook0")

• • VBdaqSetErrorHandler(handle&, 100)

• • VBdaqWaitForEvent(handle&, DteAdcData&)

These declarations specify the number of channels, the pre- and post-
scan counts and frequencies, and block size for the acquisition:

 Const channels& = 4
 Const PRE_SCANS& = 5
 Const POST_SCANS& = 9
 Const PRE_freq! = 100#
 Const POST_freq! = 200#
 Const BLOCK& = (PRE_SCANS& + POST_SCANS&)

Also declared are the trigger level, hysteresis, and rising parameters:
Const level% = 0
Const HYSTERESIS% = 0
Const rising& = 0

The buffer is dimensioned, as well as arrays to hold values for
channels, gains, and polarities:

Dim buf%(BLOCK& * channels&)
Dim chans&(channels&), gains&(channels&),
polarities&(channels&)

Initialize the arrays with the channel numbers and gains for each channel:
 chans&(0) = 1 ' channel numbers
 chans&(1) = 3
 chans&(2) = 5
 chans&(3) = 7
 For i& = 0 To channels& - 1
 gains&(i&) = DgainX1& ' unity gain
 polarities&(i&) = 1 ' bipolar
 Next i&

Now to open the device and set up the error handler:
handle& = VBdaqOpen("WaveBook0")
 ret& = VBdaqSetErrorHandler(handle&, 100)
 On Error GoTo ErrorHandlerADC6

Specify the packed-data format for the transfer:
ret& = VBdaqAdcSetRawDataFormat(handle&, DadfPacked&)

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-19

Configure the acquisition for Nshot, with 9 post-trigger scans:
ret& = VBdaqAdcSetAcq&(handle&, DaamNShot&, 0, scans&)

Set the scan configuration using the arrays initialized earlier:
 ret& = VBdaqAdcSetScan&(handle&, chans&(), gains&(), polarities&(),
channels&)

Set the post-trigger scan rate:
 ret& = VBdaqAdcSetFreq&(handle&, POST_freq!)

Set the trigger source to an analog trigger on channel 1 at 2 volts:

 ret& = VBdaqAdcSetTrig&(handle&, DatsHardwareAnalog&, rising&, level%,
HYSTERESIS%, chans&(0))

 Arm the acquisition:
 ret& = VBdaqAdcArm&(handle&)

Start reading data in the background mode with cycle mode and updateSingle off:

 ret& = VBdaqAdcTransferSetBuffer(handle&, buf%(), BLOCK&,
DatmCycleOff& + DatmUpdateSingle&)

Start the transfer:

 ret& = VBdaqAdcTransferStart(handle&)
Issue a software trigger command to the hardware, and wait for the transfer to begin:

 ret& = VBdaqAdcSoftTrig&(handle&)
 retCount& = 0
 While retCount& < BLOCK '= 0
 ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)
 Wend
 Print "Triggered. Transfer in progress."

Wait for first data to be received:
ret& = VBdaqWaitForEvent(handle&, DteAdcData&)

Wait for the rest of the data to be transmitted:
 While retCount& < BLOCK
 ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)
 Wend
 Print "Acquisition complete:"; retCount&; "scans acquired."
 Print

Unpack the packed data using the same buffer:

 ret& = VBdaqCvtRawDataFormat&(buf%(), DacaUnpack, retCount&, BLOCK&,
channels&)

Rotate the unpacked data so that the earliest data starts at the beginning of the buffer and the latest is at
the end:

 ret& = VBdaqCvtRawDataFormat&(buf%(), DacaRotate, retCount&, BLOCK&,
channels&)

Display the results:
 Print "Pre-trigger data acquired:"
 For i& = 0 To channels& - 1
 Print "Channel"; i& + 1; "Data:";
 For j& = 0 To PRE_SCANS& - 1
 Print Tab(j& * 7 + 17); buf%(j& * channels& + i&);
 Next j&
 Print
 Next i&
 Print
 Print "Post-trigger data acquired:"
 For i& = 0 To channels& - 1
 Print "Channel"; i& + 1; "Data:";
 For j& = PRE_SCANS& To BLOCK& - 1
 Print Tab((j& - PRE_SCANS&) * 7 + 17); buf%(j& * channels& +

i&);
 Next j&
 Print
 Next i&

 Finally, close the device before exiting:
 ret& = VBdaqClose(handle&)

Enhanced API Programming Models (WaveBook) Chapter 11

11-20 WaveBook User’s Manual

Double Buffering
This example demonstrates using double buffering in
the background mode, so that data can be read into
one buffer while the another buffer can be processed
in the foreground. Functions used include:

• • VBdaqAdcArm&(handle&)

• • VBdaqAdcBufferTransfer(buf1%(0),
BLOCK&, 0, 0, 0, tmpActive&,
tmpRetCount&)

• • VBdaqAdcSetAcq&(handle&,
DaamNShot&, 0, scans&)

• • VBdaqAdcSetFreq&(handle&, freq!)

• • VBdaqAdcSetMux&(handle&, 1,
channels&, DgainX1&,
DafAnalog&+DafUnipolar&)

• • VBdaqAdcSetTrig(handle&,
DatsSoftware&, rising&, level%,
HYSTERESIS%, 1)

• • VBdaqAdcSoftTrig&(handle&)

• • VBdaqAdcTransferGetStat(handle&,
active&, retCount&)

• • VBdaqAdcTransferSetBuffer(handle&,
buf0%(), BLOCK&,
DatmCycleOff& + DatmUpdateSingle&)

• • VBdaqAdcTransferStart(handle&)

• • VBdaqClose(handle&)

• • VBdaqOpen("WaveBook0")

• • VBdaqSetErrorHandler(handle&, 100)
The following constants define the number of
channels and other acquisition parameters:

 Const channels& = 8
 Const scans& = 20000
 Const BLOCK& = 1000
 Const freq! = 5000#
 Const level% = 0
 Const HYSTERESIS% = 0
 Const rising& = 0

Dimension 2 buffers for double buffering:
 Dim buf0%(channels& * BLOCK&)
 Dim buf1%(channels& * BLOCK&)

Set error handler and initialize WaveBook:
 handle& = VBdaqOpen("WaveBook0")
 ret& =
VBdaqSetErrorHandler(handle&, 100)

 On Error GoTo ErrorHandlerADC7
Set the acquisition to NShot on trigger and the post-
trigger scan count:

 ret& = VBdaqAdcSetAcq&(handle&,
DaamNShot&, 0, scans&)

Set the scan configuration for unity gain, from
channels 1 to 8, in analog unipolar mode:

 ret& = VBdaqAdcSetMux&(handle&, 1,
channels&, DgainX1&,
DafAnalog&+DafUnipolar&)

Set the post-trigger scan rate:
 ret& = VBdaqAdcSetFreq&(handle&,
freq!)

Set the trigger source to a software trigger command:
 ret& = VBdaqAdcSetTrig(handle&, DatsSoftware&, rising&, level%,
HYSTERESIS%, 1)

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-21

Arm the acquisition:
 ret& = VBdaqAdcArm&(handle&)

Set up the first buffer for BLOCK scans, with cycle mode off and update single on:

 ret& = VBdaqAdcTransferSetBuffer(handle&, buf0%(), BLOCK&, DatmCycleOff&
+ DatmUpdateSingle&)

Start the first transfer; the transfer will actually start upon trigger detection. In this case, the following
software trigger will start the transfer:

 ret& = VBdaqAdcTransferStart(handle&)
Issue a software trigger command to the hardware to trigger the transfer:

 ret& = VBdaqAdcSoftTrig&(handle&)
The next do loop swaps the active buffer back and forth from buf0 to buf1 and waits for the
acquisition to go inactive or the buffer to fill up. Swapping continues until the transfer goes inactive:

 whichBuf& = 0
 Do

The following line changes the current buffer:
 If whichBuf& = 1 Then whichBuf& = 0 Else whichBuf& = 1

Wait for the acquisition to go inactive or the buffer to be filled:
 Do
 ret& = VBdaqAdcTransferGetStat(handle&, active&, retCount&)
 Loop While ((active& <> 0) And (retCount& < BLOCK&))

If the previous acquisition is still active, start another transfer into the next buffer:
 If (active& <> 0) Then
 If whichBuf& = 0 Then
 ret& = VBdaqAdcTransferSetBuffer(handle&, buf0%(), BLOCK&,
DatmCycleOff& + DatmUpdateSingle&)

 ret& = VBdaqAdcTransferStart(handle&)
Otherwise, restart the transfer into the current buffer:

 Else
 'ret& = VBdaqAdcBufferTransfer(buf1%(0), BLOCK&, 0, 0, 0,

tmpActive&, tmpRetCount&)
 ret& = VBdaqAdcTransferSetBuffer(handle&, buf1%(), BLOCK&,

DatmCycleOff& + DatmUpdateSingle&)
 ret& = VBdaqAdcTransferStart(handle&)
 End If
 End If

Send the data into the process buffer, totals():
 If (retCount& > 0) Then

Average the readings in the process buffer and print the results:
 For j& = 0 To channels& - 1
 totals&(j&) = 0
 Next j&
 For i& = 0 To retCount& - 1
 For j& = 0 To channels& - 1

Decide which buffer to add the data from:
 If whichBuf& = 0 Then
 totals&(j&) = totals&(j&) + buf1%(i& * channels& + j&)
 Else
 totals&(j&) = totals&(j&) + buf0%(i& * channels& + j&)
 End If
 Next j&
 Next i&

Display the averaged results:
 Print "Averages:";
 For j& = 0 To channels& - 1
 Print Tab(j& * 7 + 17); Format$((5# / 32768#) * totals&(j&) /

retCount&, "#0.000");
 Next j&
 Print
 End If

Continue the do..while loop until the acquisition goes inactive:
 Loop While (active& <> 0)

Close the device before exiting:
 ret& = VBdaqClose(handle&)

Enhanced API Programming Models (WaveBook) Chapter 11

11-22 WaveBook User’s Manual

Direct-to-Disk Transfers
This example takes multiple scans from multiple channels and writes
them directly to disk in a packed-data format. Functions used are:

• • VBdaqAdcSetRawDataFormat&(handle&,
DadfPacked&)

• • VBdaqAdcArm&(handle&)

• • VBdaqAdcSetAcq&(handle&, DaamNShot, 0, scans&)

• • VBdaqAdcSetDiskFile&(handle&, "adcex8.bin",
DaomAppendFile&, 0)

• • VBdaqAdcSetFreq&(handle&, freq!)

• • VBdaqAdcSetMux&(handle&, 1, channels&,
DgainX1&, DafUniPolar&+DafAnalog&)

• • VBdaqAdcSetTrig&(handle&, DatsSoftware&,
DatdRisingEdge&, 0, HYSTERESIS%, 1)

• • VBdaqAdcSoftTrig&(handle&)

• • VBdaqAdcTransferGetStat&(handle&, active&,
retCount&)

• • VBdaqAdcTransferSetBuffer&(handle&, buf%(),
BLOCK&, DatmCycleOn& + DatmUpdateBlock&)

• • VBdaqAdcTransferStart&(handle&)

• • VBdaqClose&(handle&)

• • VBdaqCvtRawDataFormat&(buf%(), DacaUnpack,
BLOCK&, channels&, scanCount&)

• • VBdaqOpen&("WaveBook0")

• • VBdaqSetErrorHandler(handle&, 100)

File handling in MS-Windows requires calls to the windows API, so
the following constants are defined for use in those calls. For further
information, see mapiwin.h.

Const GENERIC_READ& = &H80000000
Const OPEN_EXISTING = 3
Const FILE_ATTRIBUTE_NORMAL& = &H80
Const OPEN_ALWAYS = 4
Const CREATE_ALWAYS = 2

Also define the usual constants defining scan parameters and some
declarations for file manipulation:

Const channels& = 2
Const scans& = 800
Const freq! = 200#
Const BLOCK& = 200 ' CHANNELS& * BLOCK& must
be a multiple of 4

Const HYSTERESIS% = 0
Dim buf%(channels& * BLOCK&)
Dim fileHandle&
Dim byteCount&, wordCount&, sampleCount&,
scanCount&

Dim binFile$
First set the name of the file to be used for the acquisition:

binFile = "adcex8.bin"
Open the device, and set the error handler:

handle& = VBdaqOpen&("WaveBook0")
ret& = VBdaqSetErrorHandler(handle&, 100)
On Error GoTo ErrorHandlerADC8

Enable data packing:

 ret& = VBdaqAdcSetRawDataFormat&(handle&, DadfPacked&)
Set the acquisition to NShot on trigger and the post-trigger scan count:

 ret& = VBdaqAdcSetAcq&(handle&, DaamNShot, 0, scans&)

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-23

Set the scan configuration for channels 1 to 8 with a gain of ×1 in unipolar analog mode:

 ret& = VBdaqAdcSetMux&(handle&, 1, channels&, DgainX1&,
DafUniPolar&+DafAnalog&)

Set the post-trigger scan frequency:

 ret& = VBdaqAdcSetFreq&(handle&, freq!)
Set the trigger source to a software trigger command; the rest of the parameters have no effect on a
software trigger:

 ret& = VBdaqAdcSetTrig&(handle&, DatsSoftware&, DatdRisingEdge&, 0,
HYSTERESIS%, 1)

 Set the direct-to-disk filename with no pre-write, in append mode; also available is:

 ret& = VBdaqAdcSetDiskFile&(handle&, "adcex8.bin", DaomAppendFile&, 0)
Start reading data in the background mode with cycle mode on and updateBlock:

ret& = VBdaqAdcTransferSetBuffer&(handle&, buf%(), BLOCK&, DatmCycleOn& +
DatmUpdateBlock&)

ret& = VBdaqAdcTransferStart&(handle&)
ret& = VBdaqAdcArm&(handle&)
ret& = VBdaqAdcSoftTrig&(handle&)

Monitor the progress of the transfer:

active& = -1
 While active& <> 0
 ret& = VBdaqAdcTransferGetStat&(handle&, active&, retCount&)
 Wend
 Print "Acquisition complete:"; retCount&; "scans acquired."

Close the device:

 ret& = VBdaqClose&(handle&)
Now we convert the binary file to a text file. There is no simple way to do this, so it is necessary to
open the file and manipulate it by hand.

First, open the binary file:

Open "adcex8.bin" For Input As 1
Next, get a handle for the file; this is one of the windows API calls, CreateFile (it doesn’t actually
create anything, however).

fileHandle& = CreateFile(binFile, GENERIC_READ, &H1, "", CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL, "")

Now open the text output file where the converted data will be written:

Open "adcex8.txt" For Output As 2
Next, actually convert the binary data to text:

 Do
Convert BLOCK unpacked scans to packed bytes:

 scanCount& = BLOCK&
 sampleCount& = scanCount& * channels&
 wordCount& = sampleCount& * 3 / 4
 byteCount& = 2 * wordCount&

Read the packed bytes from the input file, and get the number of bytes actually read. The
UBound()and Lbound()functions just return the upper and lower bounds of the buffer. Get #1
retrieves data from the file and stores it in the buf() array.

 Dim sz&
 sz& = UBound(buf%) - LBound(buf%)
 For i& = 0 To sz&
 Get #1, i&, buf(i&)
 Next i&
 byteCount& = sz

Next, convert the data just read into the buffer from packed bytes to unpacked scans:

 wordCount& = byteCount& / 2
 sampleCount& = wordCount& * 4 / 3
 scanCount& = sampleCount& / channels&

Enhanced API Programming Models (WaveBook) Chapter 11

11-24 WaveBook User’s Manual

Unpack the packed data using the same buffer. This command can be called even if the WaveBook if
not online or connected.

 ret& = VBdaqCvtRawDataFormat&(buf%(), DacaUnpack, BLOCK&,
channels&, scanCount&)

Write the scans read and unpacked to the text file

 For i& = 0 To scanCount& - 1
 For j& = 0 To channels& - 1

Send a tab between channels and a newline after each scan:

 If (j& < channels& - 1) Then
 termChar$ = Chr$(9)
 Else
 termChar$ = Chr$(13) + Chr$(10)
 End If

Calculate and write out the voltage value:

 voltage! = buf%(i& * channels& + j&) * 5! / 32768!
 Print #2, Format$(voltage!, ".000") + termChar$;
 Next j&
 Next i&

Print something so the program does not appear to be locked:

 Print ".";
 Loop While (byteCount& > 0) ' A byteCount of 0 indicates end-of-file
 ' Close the input and output files
 Close 1
 Close 2
 Print "complete."

After program execution: data has been collected directly to disk in a binary file format, the WaveBook
device closed, the binary file was then opened, the data unpacked, and then written to a text file.

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-25

Transfers With Driver-Allocated Buffers
This example demonstrates the use of the new
daqAdcTransferBufData() function. The following program
reads scans of multiple channels in the background mode and uses a
software trigger to start the acquisition. Functions used include:

• • VBdaqAdcArm&(handle&)

• • VBdaqAdcSetAcq&(handle&, DaamNShot&, 0,
scans&)

• • VBdaqAdcSetFreq&(handle&, freq#)

• • VBdaqAdcSetMux&(handle&, 1, channels&,
DgainX1&, 1)

• • VBdaqAdcSetTrig&(handle&, DatsSoftware&,
0,0,0,0)

• • VBdaqAdcSoftTrig&(handle&)

• • VBdaqAdcTransferBufData(handle&, userBuf(0),
1, DatmWait , retVal)

• • VBdaqAdcTransferGetStat(handle, active,
retCount);

• • VBdaqAdcTransferSetBuffer(handle&, buf%(),
scans&, DatmCycleOff& + DatmUpdateSingle&)

• • VBdaqAdcTransferStart(handle&)

• • VBdaqClose(handle&)

• • VBdaqOpen("WaveBook0")

• • VBdaqSetErrorHandler(handle&, 100)

The constants used are defined as follows:
Const channels& = 8
Const scans& = 9
Const freq# = 200

As usual, the device is opened and the error handler is set up:
handle& = VBdaqOpen("WaveBook0")
ret& = VBdaqSetErrorHandler(handle&, 100)
On Error GoTo ErrorHandlerADC4

The acquisition is configured for 9 post-trigger scans and Nshot
mode:

ret& = VBdaqAdcSetAcq&(handle&, DaamNShot&, 0,
scans&)

Set up the scan configuration for channels 1 to 9 with a gain of ×1:
ret& = VBdaqAdcSetMux&(handle&, 1, channels&, DgainX1&, 1)

Set the post-trigger scan rates:
ret& = VBdaqAdcSetFreq&(handle&, freq#)

Set the trigger source to a software trigger command; the other trigger parameters are not needed with a
software trigger.

ret& = VBdaqAdcSetTrig&(handle&, DatsSoftware&, 0,0,0,0)

Now to set up the buffer for a background acquisition, in update single mode with cycle mode off.
ret& = VBdaqAdcTransferSetBuffer(handle&, buf%(), scans&, DatmCycleOff& +
DatmUpdateSingle&)

Start the transfer, and trigger to begin transferring data:
ret& = VBdaqAdcTransferStart(handle&)

Arm the acquisition:
ret& = VBdaqAdcArm&(handle&)

Trigger the transfer:
ret& = VBdaqAdcSoftTrig&(handle&)

Monitor the progress of the background transfer:

Enhanced API Programming Models (WaveBook) Chapter 11

11-26 WaveBook User’s Manual

VBdaqAdcTransferGetStat(handle, active, retCount);
retCount=1;
 while retCount<>0 do
 VBdaqAdcTransferBufData(handle&, userBuf(0), 1, DatmWait , retVal)
 print"Transfer in progress: “,retCount, “scans acquired."
 for i=0 to CHANS
 print userBuf(i)
 VBdaqAdcTransferGetStat(handle, active, retCount);
next i
print "Acquisition complete."

Now the data can be displayed or manipulated:
Print "Data acquired:"
 For i& = 0 To channels& - 1
 Print "Channel"; i& + 1; "Data:";
 For j& = 0 To scans& - 1
 Print Tab(j& * 7 + 17); buf%(j& * channels& + i&);
 Next j&
 Print
 Next i&

Finally, close the device:
ret& = VBdaqClose(handle&)

Chapter 11 Enhanced API Programming Models (WaveBook)

WaveBook User’s Manual 11-27

 Summary Guide of Selected Enhanced API Functions
The following table organizes the enhanced API functions by type and includes notes on when to use
them.

Simple One-Step Routines
For single gain, consecutive channel, foreground transfers, use the following functions:
Foreground Operation Single Scan Multiple Scans
Single Channel daqAdcRd daqAdcRdN
Consecutive Multiple Channels daqAdcRdScan daqAdcRdScanN

Complex A/D Scan Group Configuration Routines
For non-consecutive channels, high-speed digital channels, multiple gain settings, or multiple polarity settings, use the SetScan

functions.
daqAdcSetScan Set scan sequence using arrays of channel and gain values.
daqAdcSetMux Set a contiguous scan sequence using single gain, polarity and channel flag values

Trigger Options
After the scan is set, the trigger needs to be set. The two triggering modes are one-shot or continuous.
• In one-shot mode, a trigger is required to start each A/D scan.
• A single trigger starts the scans, and the pacer clock determines the rate between scans.
Note: If the trigger source is analog, a trigger level is also required.
daqAdcSetTrig Configure the trigger event using source, level, rising and channel values.
daqAdcCalcTrig Using the selected trigger voltage, trigger direction, channel gain, and reference voltage, return the

analog trigger source and value which can be used with daqAdcSetTrig.
If a software trigger is selected, the start time of the scan depends on the application calling daAdcSoftTrig.

Multiple Scan Timing
If the acquisition is to have multiple scans and the trigger mode is one-shot, the pacer clock needs to be set with one of the

following functions:
daqAdcSetRate Set/Get the specified frequency or period for the specified mode.
daqAdcSetFreq Set the pacer clock to the given frequency.

A/D Acquisition
A/D acquisition settings are not active until the acquisition is armed.

daqAdcArm Arm an A/D acquisition using the current configuration. If the trigger source was set to be immediate,
the acquisition will be triggered immediately.

daqAdcDisarm Disarm the current acquisition if one is active. This command will disarm the current acquisition and
terminate any current A/D transfers.

daqAdcSetAcq Define the mode of the acquisition and set the pre-trigger and post-trigger acquisition counts, if
applicable.

A/D Data Transfer
After the acquisition is started, the data needs to be transferred to the application buffer. Three routines are used:
daqAdcTransferSetBuffer Configure a buffer for A/D transfer. Allows configuration of the buffer for block and single

reading update modes as well as linear and circular buffer definitions.
daqAdcTransferStart Start a transfer from the Daq* device to the buffer specified in the daqAdcTransferSetBuffer

command
daqAdcTransferStop Stop a transfer from the Daq* device to the buffer specified in the daqAdcTransferSetBuffer

command
To find out whether a background A/D transfer is complete or to stop transfers, use the following function:
daqAdcTransferGetStat Return current A/D transfer status as well as a count representing the total number of transferred

scans or the number of scans available.

Digital Functions
daqIORdBit Return indicated bit from selected channel.
daqIOWrBit Send indicated bit to selected channel.

Enhanced API Programming Models (WaveBook) Chapter 11

11-28 WaveBook User’s Manual

- Notes

WaveBook Command Reference (Enhanced API) 12

WaveBook User’s Manual 12-1

Overview
The first part of this chapter describes the WaveBook driver commands for Windows95 and
WindowsNT in 32-bit Enhanced mode (this is the Enhanced API and is not to be confused with the
Standard API). The first table lists the commands by their function types as defined in the driver
header files. Then, the prototype commands are described in alphabetical order as indexed below.
Note: The WaveBook API is a subset of the Daq* API which also applies to other products; only
WaveBook-related commands are described here.

Beginning on page 12-38, several reference tables define parameters for: event-handling definitions,
hardware definitions, ADC trigger-source and miscellaneous definitions, WBK card definitions, the
API error codes, etc.

Function Description Page

Device Initialization Prototypes
daqOpen Open a session with the Daq* (including WaveBook) 12-33
daqClose End communication with the Daq* (including WaveBook) 12-25
daqOnline Check online status of the Daq* (including WaveBook) 12-32
daqGetDeviceCount Return the number of currently configured devices 12-28
daqGetDeviceList Return the list of currently configured devices 12-28
daqGetDeviceProperties Return the properties of specified device 12-29

Error Handler Function Prototypes
daqSetDefaultErrorHandler Set the default error handler 12-34
daqSetErrorHandler Specify a user defined routine to call when an error occurs in any command 12-34
daqProcessError Process a driver defined error condition 12-33
daqGetLastError Return the last logged error condition 12-30
daqDefaultErrorHandler Call the default error handler 12-27
daqFormatError Return text string for specified error 12-27

Event Handling Function Prototypes
daqSetTimeout Set the time-out value for the Daq* operation (including WaveBook) 12-35
daqWaitForEvent Wait for specified Daq* device event (including WaveBook) 12-37
daqWaitForEvents Wait for multiple specified Daq* device events (including WaveBook) 12-37

Utility Function Prototypes
daqGetDriverVersion Return the software version 12-29
daqGetHardwareInfo Return the hardware version 12-29

Expansion Configuration Prototypes
daqAdcExpSetBank Set bank specific configurations 12-5
daqAdcExpSetChanOption Set channel specific configurations 12-5
daqAdcExpSetModuleOption Set module specific configurations 12-6
daqSetOption Set options for a device’s channel/signal path configuration 12-35

Custom ADC Acquisition Prototypes - Scan Sequence
daqAdcSetMux Configure a scan specifying start and end channels 12-14
daqAdcSetScan Configure up to 256 channels making up an A/D or HS digital input scan 12-15
daqAdcGetScan Read the current scan configuration 12-7

Custom ADC Acquisition Prototypes - Trigger
daqAdcCalcTrig Calculate the trigger level and trigger source for an analog trigger 12-4
daqAdcSetTrig Configure an A/D trigger 12-16
daqAdcSetTrigEnhanced Configure an A/D trigger with multiple trigger-event conditions 12-17
daqAdcSoftTrig Save a software trigger command to the DaqBook/DaqBoard 12-18

Custom ADC Acquisition Prototypes - Scan Rate and Source
dacAdcSetRate Configure the ADC scan rate with the mode parameter 12-14
daqAdcSetFreq Configure the pacer clock frequency in Hz 12-13
daqAdcGetFreq Read the current pacer clock frequency 12-6

Custom ADC Acquisition Prototypes - Scan Count, Rate and Source
daqAdcSetAcq Set acquisition configuration information 12-11

Custom ADC Acquisition Prototypes - Direct-to-Disk
daqAdcSetDiskFile Specify the disk file for direct-to-disk transfers 12-13

Custom ADC Acquisition Prototypes - Acquisition Control
daqAdcArm Arm an acquisition 12-2
daqAdcDisarm Disarm an acquisition 12-4

WaveBook Command Reference (Enhanced API) Chapter 12

12-2 WaveBook User’s Manual

Function Description Page

Custom ADC Acquisition Prototypes - Data Transfer without Buffer Allocation
daqAdcTransferBufData Transfer scans from driver-allocated buffer to user-specified buffer 12-19
daqAdcTransferSetBuffer Setup a destination buffer for an ADC transfer 12-21
daqAdcTransferStart Start an ADC transfer 12-22
daqAdcTransferGetStat Retrieve status of an ADC transfer 12-20
daqAdcTransferStop Stop an ADC transfer 12-22

Custom ADC Acquisition Prototypes - Buffer Manipulation
daqAdcBufferRotate Reorganize a circular buffer so that oldest data is oriented towards the front 12-3

One-Step ADC Acquisition Prototypes
daqAdcRd Configure an A/D acquisition and read one sample from a channel 12-7
daqAdcRdScan Configure an A/D acquisition and read one scan 12-9
daqAdcRdN Configure an A/D acquisition and read multiple scans from a channel 12-8
daqAdcRdScanN Configure an A/D acquisition and read multiple scans 12-10

Data Format and Conversion Prototypes
daqAdcSetDataForma Set the raw and the post-acquisition data formats 12-12
daqCvtRawDataFormat Convert raw data to a specified format 12-26
daqCvtSetAdcRange Set the ADC Voltage Range for the conversion routines 12-27

Software Calibration Prototypes
daqCalSelectCalTable Select calibration-table source for the device 12-24
daqCalSelectInputSignal Select input signal source for user calibration 12-24
daqCalGetConstants Get calibration constants from selected calibration table 12-23
daqCalSetConstants Set user-accessible calibration constants 12-25
daqCalSaveConstants Save current calibration table 12-23

General I/O Prototypes - Read/Write
daqIOReadBit Read a DIO bit (channel) 12-31
daqIORead Read a DIO byte (8 channels) 12-30
daqIOWriteBit Write a DIO bit (channel) 12-32
daqIOWrite Write a DIO byte (8 channels) 12-31

Test Prototypes
daqTest Perform a specified test on a Daq* device 12-36

Commands in Alphabetical Order
The following pages give details for each API command. Listed in alphabetical order, each section has
a table that summarizes the main features of the command (C, Visual BASIC, and Delphi language
prototypes and their related parameters). An explanation follows with related information and in some
cases a programming example. Typographic note: Commands, parameters, values, and code use a
bold, mono-spaced Courier font to help distinguish characters that can be ambiguous in other fonts.

daqAdcArm
DLL Function daqAdcArm(DaqHandleT handle);

C daqAdcArm(DaqHandleT handle);

Visual BASIC VBdaqAdcArm&(ByVal handle&)

Delphi daqAdcArm(handle:DaqHandleT)

Parameters
handle Handle to the device to which configured ADC acquisition is to be armed
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcDisarm

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcArm allows you to arm an ADC acquisition by enabling the currently defined ADC
configuration for acquisition. ADC acquisition will occur when the trigger event (as specified by
daqAdcSetTrig)is satisfied. All ADC acquisition configuration information must be specified
prior to the daqAdcArm command. For a previously configured acquisition, the daqAdcArm
command will use the specified parameters. If no previous configuration was given, or it is
desirable to change any or all acquisition parameters, then those commands relating to the desired
ADC acquisition configuration must be issued prior to calling daqAdcArm.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-3

daqAdcBufferRotate
DLL Function daqAdcBufferRotate(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

chanCount, DWORD retCount);
C daqAdcBufferRotate(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

chanCount, DWORD retCount);
Visual BASIC VBdaqAdcBufferRotate&(ByVal handle&, buf%(), ByVal scanCount&, ByVal chanCount&,

ByVal retCount&)
Delphi daqAdcBufferRotate(handle:DaqHandleT; buf:PWORD; scanCount:DWORD;

chanCount:DWORD; retCount:DWORD)
Parameters
handle Handle to the device for which the ADC transfer buffer is to be rotated
buf Pointer to the buffer to rotate
scanCount Total number of scans in the buffer
chanCount Number of channels in each scan
retCount Last value returned in the retCount parameter of the daqAdcTransferGetStat function
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcTransferGetStat, daqAdcTransferSetBuffer

Program References None
Used With All devices

daqAdcBufferRotate allows you to linearize a circular buffer acquired via a transfer in cycle
mode. This command will organize the circular buffer chronologically. In other words, it will order
the data from oldest-first to newest-last in the buffer. When scans are acquired using
daqAdcBufferTransfer with a non-zero cycle parameter, the buffer is used as a circular
buffer; once it is full, it is re-used, starting at the beginning of the buffer. Thus, when the
acquisition is complete, the buffer may have been overwritten many times and the last acquired scan
may be any place within the buffer.

For example, during the acquisition of 1000 scans in a buffer that only has room for 60 scans, the
buffer is filled with scans 1 through 60. Then scan 61 overwrites scan 1; scan 62 overwrites scan 2;
and so on until scan 120 overwrites scan 60. At this point, the end of the buffer has been reached
again and so scan 121 is stored at the beginning of the buffer, overwriting scan 61. This process of
overwriting and re-using the buffer continues until all 1000 scans have been acquired. At this point,
the buffer has the following contents:

Buffer
Position

1 2 3 ... 39 40 41 42 ... 59 59 60

Scan 961 962 963 ... 999 1000 941 942 ... 958 959 960

In this case, because the total number of scans is not an even multiple of the buffer size, the oldest scan
is not at the beginning of the buffer and the last scan is not at the end of the buffer.
daqAdcBufferRotate can rearrange the scans into their natural, chronological order:

Buffer
Position

1 2 3 ... 39 40 41 42 ... 59 59 60

Scan 941 942 943 ... 979 980 981 982 ... 998 999 1000

If the total number of acquired scans is no greater than the buffer size, then the scans have not
overwritten earlier scans and the buffer is already in chronological order. In this case,
daqAdcBufferRotate does not modify the buffer.

Note: daqAdcBufferRotate only works on unpacked samples.

WaveBook Command Reference (Enhanced API) Chapter 12

12-4 WaveBook User’s Manual

daqAdcCalcTrig
DLL Function daqAdcCalcTrig(DaqHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT

voltageLevel, PWORD triggerLevel);
C daqAdcCalcTrig(DaqHandleT handle, BOOL bipolar, FLOAT gainVal, FLOAT

voltageLevel, PWORD triggerLevel);
Visual BASIC VBdaqAdcCalcTrig&(ByVal handle&, ByVal bipolar&, ByVal gainVal!, ByVal

voltageLevel!, triggerLevel%)
Delphi daqAdcCalcTrig(handle:DaqHandleT; bipolar:longbool; gainVal:single;

voltageLevel:single; var triggerLevel:DWORD)
Parameters
handle Handle to the device for which the trigger level is to be calculated
bipolar A flag that should be non-zero if the trigger channel is bipolar, or zero if it is unipolar
gainVal A gain value of the trigger channel
voltageLevel Voltage level to trigger at.
triggerLevel Returned count to program the trigger using the daqAdcSetTrig function
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcSetTrig

Program References None
Used With All devices

daqAdcCalcTrig calculates the trigger level and source for an analog trigger. The result of
daqAdcCalcTrig is the triggerLevel parameter. The triggerLevel parameter can then
be passed to the daqAdcSetTrig function to configure the analog trigger.

The triggerLevel parameter is calculated from: the unipolar/bipolar and gain settings of the
trigger channel, the desired analog voltage setpoint and trigger polarity, and the external reference
voltage of D/A channel 1. The trigger channel is automatically the first channel in the current A/D
scan group for DaqBooks and DaqBoards.

The bipolar parameter should be set according to the current bipolar/unipolar setting of the
trigger channel. This parameter is jumper-selectable when using a DaqBook/100/112 and
DaqBoard/100A/112A and software-programmable when using the DaqBook/200/200A.

The gainVal parameter sent to the daqAdcCalcTrig should be the actual gain of the trigger
channel, not the gain definition used by the rest of the Daq* A/D functions. For example, if the
trigger channel uses the gain definition DgainX8, the gain parameter of daqAdcCalcTrig
should be 8.

The voltageLevel defines the analog voltage at which the Daq* will trigger. The setpoint must
be within the valid input range of the trigger channel. For example, the setpoint range for a bipolar
channel with unity gain would be 0 to 10 V (for ×8 gain, the range would be 0 to 1.25 V) for a
DaqBook or a DaqBoard. Note: When using the Daq PCMCIA, the bipolar parameter is ignored.

daqAdcDisarm
DLL Function daqAdcDisarm(DaqHandleT handle);

C daqAdcDisarm(DaqHandleT handle);

Visual BASIC VBdaqAdcDisarm&(ByVal handle&)

Delphi daqAdcDisarm(handle:DaqHandleT)

Parameters
handle handle to the device to disable ADC acquisitions
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcArm

Program References None
Used With All devices

daqAdcDisarm allows you to disarm an ADC acquisition if one is currently active.
• If the specified trigger event has not yet occurred, the trigger event will be disabled and no

ADC acquisition will be performed.
• If the trigger event has occurred, the acquisition will be halted and the data transfer stopped

and no more ADC data will be collected.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-5

daqAdcExpSetBank
DLL Function daqAdcExpSetBank(DaqHandleT handle, DWORD chan, DaqAdcExpType bankType);

C daqAdcExpSetBank(DaqHandleT handle, DWORD chan, DaqAdcExpType bankType);

Visual BASIC VBdaqAdcExpSetBank&(ByVal handle&, ByVal chan&, ByVal bankType&)

Delphi daqAdcExpSetBank(handle:DaqHandleT; chan:DWORD; bankType:DaqAdcExpType)

Parameters
handle Handle to the device for which to set the expansion bank
chan Channel number on the DBK card. Channel numbers are in groups of 16 channels per bank.
bankType Type of channel bank.
Returns DerrInvChan - Invalid Channel Number (also, refer to API Error Codes on page 12-42)
See Also daqAdcExpSetChanOption, daqAdcExpSetModuleOption, daqAdcSetOption

Program References None
Used With All devices

daqAdcExpSetBank internally programs intelligent DBK card channels so the Daq* gains may
be set just before the acquisition. A bank consists of 16 channels, but daqAdcExpSetBank must
be called once for each card in the bank. For example, if four 4-channel cards (such as a DBK7) are
used in the first expansion bank, you must call daqAdcExpSetBank 4 times with channels 16, 20,
24, and 28. With only one such card, you cannot fill the remainder of the bank with another type of
device. See the DBK Card Definition table for bankType settings.

daqAdcExpSetChanOption
DLL Function daqAdcExpSetChanOption(DaqHandleT handle, DWORD chan, DaqChanOptionType

optionType, FLOAT optionValue);
C daqAdcExpSetChanOption(DaqHandleT handle, DWORD chan, DaqChanOptionType

optionType, FLOAT optionValue);
Visual BASIC VBdaqAdcExpSetChanOption&(ByVal handle&, ByVal chan&, ByVal optionType&, ByVal

optionValue!)
Delphi daqAdcExpSetChanOption(handle:DaqHandleT; chan:DWORD; const

optionType:DaqChanOptionType; optionValue:single)
Parameters
handle Handle to the device for which to set the channel option
chan The number of the channel to be configured.
optionType The configurable option to be set (see table DBK Card Definitions)
optionValue The configurable option to be set (see table DBK Card Definitions)
Returns DerrNoError - No Errors (also, refer to API Error Codes on page 12-42)

DerrInvChan - Invalid Channel Number
See Also daqAdcExpSetModuleOption, daqAdcSetOption

Program References None
Used With All devices

daqAdcExpSetChanOption allows you to configure channel parameters for DBK modules with
software-configurable settings on a per channel basis. See the DBK Card Definition table for
optionType and optionValue settings.

WaveBook Command Reference (Enhanced API) Chapter 12

12-6 WaveBook User’s Manual

daqAdcExpSetModuleOption
DLL Function daqAdcExpSetModuleOption(DaqHandleT handle, DWORD chan, DaqChanOptionType

optionType, FLOAT optionValue);
C daqAdcExpSetModuleOption(DaqHandleT handle, DWORD chan, DaqChanOptionType

optionType, FLOAT optionValue);
Visual BASIC VBdaqAdcExpSetModuleOption&(ByVal handle&, ByVal chan&, ByVal optionType&, ByVal

optionValue!)
Delphi daqAdcExpSetModuleOption(handle:DaqHandleT; chan:DWORD; const

optionType:DaqChanOptionType; optionValue:single)
Parameters
handle Handle to the device for which to set the module option.
chan Any channel on the module (expansion chassis) to be configured.
optionType The configurable option to be set (see table DBK Card Definitions).
optionValue The configurable option to be set (see table DBK Card Definitions).
Returns An error number, or 0 if no error (also, refer to API Error Codes on page 12-42)
See Also daqAdcExpSetChanOption, daqAdcSetOption

Program References None
Used With All devices

daqAdcExpSetModuleOption allows you to configure parameters that apply to the whole
module (for DBK modules with software-configurable settings) on a per expansion module basis.
See the DBK Card Definition table for optionType and optionValue settings.

daqAdcGetFreq
DLL Function daqAdcGetFreq(DaqHandleT handle, PFLOAT freq);

C daqAdcGetFreq(DaqHandleT handle, PFLOAT freq);

Visual BASIC VBdaqAdcGetFreq&(ByVal handle&, freq!)

Delphi daqAdcGetFreq(handle:DaqHandleT; var freq:single)

Parameters
handle Handle to the device for which to get the current frequency setting
freq A variable to hold the currently defined sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns DerrNoError - No errors (also, refer to API Error Codes on page 12-42)
See Also daqAdcSetFreq, daqAdcSetClock

Program References None
Used With All devices

daqAdcGetFreq reads the sampling frequency of the pacer clock.

Note: daqAdcSetFreq assumes that the 1 MHz/10 MHz jumper is set to the default position of 1
MHz.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-7

daqAdcGetScan
DLL Function daqAdcGetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, PDWORD chanCount);
C daqAdcGetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, PDWORD chanCount);
Visual BASIC VBdaqAdcGetScan&(ByVal handle&, channels&(), gains&(), flags&(), chanCount&)

Delphi daqAdcGetScan(handle:DaqHandleT; channels:PDWORD; gains:DaqAdcGainP;
flags:PDWORD; chanCount:PDWORD)

Parameters
handle Handle to the device for which to get the current scan configuration.
channels An array to hold up to 512 channel numbers or 0 if the channel information is not desired.
*gains An array to hold up to 512 gain values or 0 if the channel gain information is not desired
flags Channel configuration flags in the in the form of a bit mask
chanCount A variable to hold the number of values returned in the chans and gains arrays
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcSetScan, daqAdcSetMux

Program References None
Used With All devices

daqAdcGetScan reads the current scan group consisting of all channels currently configured. The
returned parameter settings directly correspond to those set using the daqAdcSetScan function. For
further description of these parameters, refer to daqAdcSetScan. See ADC Flags Definition
table for channel flag definitions.

daqAdcRd
DLL Function daqAdcRd(DaqHandleT handle, DWORD chan, PWORD sample, DaqAdcGain gain,

DWORD flags);
C daqAdcRd(DaqHandleT handle, DWORD chan, PWORD sample, DaqAdcGain gain,

DWORD flags);
Visual BASIC VBdaqAdcRd&(ByVal handle&, ByVal chan&, sample%, ByVal gain&, ByVal flags&)

Delphi daqAdcRd(handle:DaqHandleT; chan:DWORD; var sample:WORD; const gain:DaqAdcGain;
flags:DWORD)

Parameters
handle Handle to the device for which the ADC reading is to be acquired
chan A single channel number
sample A pointer to a value where an A/D sample is stored. Valid values: (See daqAdcSetTag)
gain The channel gain
flags Channel configuration flags in the form of a bit mask
Returns DerrFIFOFull - Buffer Overrun

DerrInvGain - Invalid gain
DerrInvChan - Invalid channel
DerrNoError - No Error (also, refer to API Error Codes on page 12-42)

See Also daqAdcSetMux, daqAdcSetTrig, daqAdcSoftTrig

Program References DACEX.PAS (Delphi)
Used With All devices

daqAdcRd is used to take a single reading from the given local A/D channel. This function will use
a software trigger to immediately trigger and acquire one sample from the specified A/D channel.

• The chan parameter indicates the channel for which to take the sample.
• The sample parameter is a pointer to where the collected sample should be stored.
• The gain parameter indicates the channel’s gain setting.
• The flags parameter allows the setting of channel-dependent options. See ADC Flags

Definition table for channel flags definitions.

WaveBook Command Reference (Enhanced API) Chapter 12

12-8 WaveBook User’s Manual

daqAdcRdN
DLL Function daqAdcRdN(DaqHandleT handle, DWORD chan, PWORD buf, DWORD scanCount,

DaqAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq,
DaqAdcGain gain, DWORD flags);

C daqAdcRdN(DaqHandleT handle, DWORD chan, PWORD buf, DWORD scanCount,
DaqAdcTriggerSource triggerSource, BOOL rising, WORD level, FLOAT freq,
DaqAdcGain gain, DWORD flags);

Visual BASIC VBdaqAdcRdN&(ByVal handle&, ByVal chan&, buf%(), ByVal scanCount&, ByVal
triggerSource&, ByVal rising&, ByVal level%, ByVal freq!, ByVal gain&, ByVal
flags&)

Delphi daqAdcRdN(handle:DaqHandleT; chan:DWORD; buf:PWORD; scanCount:DWORD;
triggerSource:DaqAdcTriggerSource; rising:longbool; level:WORD; freq:single;
const gain:DaqAdcGain; flags:DWORD)

Parameters
handle Handle to the device for which the ADC channel samples are to be acquired
chan A single channel number
buf An array where the A/D scans will be returned
scanCount The number of scans to be taken

Valid values: 1 - 32767
triggerSource The trigger source
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level if an analog trigger is specified

Valid values: 0 -4095
freq The sampling frequency in Hz (100000.0 to 0.0002)
gain The channel gain
flags Channel configuration flags in the form of a bit mask
Returns DerrFIFOFull - Buffer overrun

DerrInvGain -Invalid gain
DerrIncChan - Invalid channel
DerrInvTrigSource - Invalid trigger
DerrInvLevel - Invalid level (also, refer to API Error Codes on page 12-42)

See Also daqAdcSetFreq, daqAdcSetMux, daqAdcSetClock, daqAdcSetTrig

Program References None
Used With All devices

daqAdcRdN is used to take multiple scans from a single A/D channel. This function will:
• Configure the pacer clock
• Configure all channels with the specified gain parameter
• Configure all channel options with the channel flags specified
• Arm the trigger
• Acquire count scans from the specified A/D channel
See ADC Flags Definition table (in ADC Miscellaneous Definitions) for channel flags
parameter definition.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-9

daqAdcRdScan
DLL Function daqAdcRdScan(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,

DaqAdcGain gain, DWORD flags);
C daqAdcRdScan(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,

DaqAdcGain gain, DWORD flags);
Visual BASIC VBdaqAdcRdScanN&(ByVal handle&, ByVal startChan&, ByVal endChan&, buf%(), ByVal

scanCount&, ByVal triggerSource&, ByVal rising&, ByVal level%, ByVal freq!,
ByVal gain&, ByVal flags&)

Delphi daqAdcRdScanN(handle:DaqHandleT; startChan:DWORD; endChan:DWORD; buf:PWORD;
scanCount:DWORD; triggerSource:DaqAdcTriggerSource; rising:longbool;
level:WORD; freq:single; const gain:DaqAdcGain; flags:DWORD)

Parameters
handle Handle to the device from which the ADC scan is to be acquired
startChan The starting channel of the scan group
endChan The ending channel of the scan group
buf An array where the A/D scans will be placed
gain The channel gain
flags Channel configuration flags in the form of a bit mask.
Returns DerrInvGain - Invalid gain

DerrInvChan -Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 12-42)

See Also daqAdcRdNScan, daqAdcSetMux, daqAdcSetClock, daqAdcSetTrig

Program References DACEX.PAS (Delphi)
Used With All devices

daqAdcRdScan reads a single sample from multiple channels. This function will use a software
trigger to immediately trigger and acquire 1 scan consisting of each channel, starting with
startChan and ending with endChan. The gain setting will be applied to all channels. See
ADC Flags Definition table for channel flags definitions.

WaveBook Command Reference (Enhanced API) Chapter 12

12-10 WaveBook User’s Manual

daqAdcRdScanN
DLL Function daqAdcRdScanN(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,

DWORD scanCount, DaqAdcTriggerSource triggerSource, BOOL rising, WORD level,
FLOAT freq, DaqAdcGain gain, DWORD flags);

C daqAdcRdScanN(DaqHandleT handle, DWORD startChan, DWORD endChan, PWORD buf,
DWORD scanCount, DaqAdcTriggerSource triggerSource, BOOL rising, WORD level,
FLOAT freq, DaqAdcGain gain, DWORD flags);

Visual BASIC VBdaqAdcRdScanN&(ByVal handle&, ByVal startChan&, ByVal endChan&, buf%(), ByVal
scanCount&, ByVal triggerSource&, ByVal rising&, ByVal level%, ByVal freq!,
ByVal gain&, ByVal flags&)

Delphi daqAdcRdScanN(handle:DaqHandleT; startChan:DWORD; endChan:DWORD; buf:PWORD;
scanCount:DWORD; triggerSource:DaqAdcTriggerSource; rising:longbool;
level:WORD; freq:single; const gain:DaqAdcGain; flags:DWORD)

Parameters
handle Handle to the device from which ADC scans are to be acquired
startchan The starting channel of the scan group (see table at end of chapter)
endchan The ending channel of the scan group (see table at end of chapter)
buf An array where the A/D scans will be placed
scanCount The number of scans to be read

Valid values: 1 - 65536
triggerSource The trigger source (see table at end of chapter)
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level if an analog trigger is specified

Valid values: 0 -4095
freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
gain The channel gain (See tables at end of chapter).
flags Channel configuration flags in the form of a bit mask.
Returns DerrInvGain - Invalid gain

DerrInvChan -Invalid channel
DerrInvTrigSource - Invalid trigger
DerrInvLevel - Invalid Level
DerrFIFOFull -Buffer Overrun
DerrNoError - No error (also, refer to API Error Codes on page 12-42)

See Also daqAdcRd, daqAdcRdN, daqAdcRdScan, daqAdcSetClock, daqAdcSetTrig

Program References None
Used With All devices

daqAdcRdScanN reads multiple scans from multiple A/D channels. This function will configure
the pacer clock, arm the trigger and acquire count scans consisting of each channel, starting with
startChan and ending with endChan. The gain setting will be applied to all channels. The
freq parameter is used to set the acquisition frequency. See ADC Flags Definition table for
channel flags parameter definition.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-11

daqAdcSetAcq
DLL Function daqAdcSetAcq(DaqHandleT handle, DaqAdcAcqMode mode, DWORD preTrigCount, DWORD

postTrigCount);
C daqAdcSetAcq(DaqHandleT handle, DaqAdcAcqMode mode, DWORD preTrigCount, DWORD

postTrigCount);
Visual BASIC VBdaqAdcSetAcq&(ByVal handle&, ByVal mode&, ByVal preTrigCount&, ByVal

postTrigCount&)
Delphi daqAdcSetAcq(handle:DaqHandleT; mode:DaqAdcAcqMode; preTrigCount:DWORD;

postTrigCount:DWORD)
Parameters
handle Handle to the device for which the ADC acquisition is to be configured
mode Selects the mode of the acquisition
preTrigCount Number of pre-trigger ADC scans to be collected
postTrigCount Number of post-trigger ADC scans to be collected
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcArm, daqAdcDisarm, daqAdcSetTrig

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcSetAcq allows you to characterize the acquisition mode and the pre- and post-trigger
durations. The mode parameter describes the style of data collection. The preTrigCount and
postTrigCount parameters specify the respective durations, or lengths, of the pre-trigger and
post-trigger acquisition states.

Acquisition modes can be defined as follows:
• DaamNShot - Once triggered, continue acquisition until the specified post-trigger count has

been satisfied. Once the post-trigger count has been satisfied, the acquisition will be
automatically disarmed.

• DaamNShotRearm - Once triggered, continue the acquisition for the specified post-trigger
count, then re-arm the acquisition with the same acquisition configuration parameters as
before. The automatic re-arming of the acquisition may be disabled at any time by issuing a
daqAdcDisarm.

• DaamInfinitePost - Once triggered, continue the acquisition indefinitely until the
acquisition is disabled by the daqAdcDisarm function.

• DaamPrePost - Begin collecting the specified number of pre-trigger scans immediately
upon issuance of the daqAdcArm function. The trigger will not be enabled until the
specified number of pre-trigger scans have been collected. Once triggered, the acquisition
will then continue collecting post-trigger data until the post-trigger count has been satisfied.
Once the post-trigger count has been satisfied, the acquisition will be automatically disarmed.

WaveBook Command Reference (Enhanced API) Chapter 12

12-12 WaveBook User’s Manual

daqAdcSetDataFormat
DLL Function daqAdcSetDataFormat(DaqHandleT handle, DaqAdcRawDataFormatT rawFormat,

DaqAdcPostProcDataFormatT postProcFormat);
C daqAdcSetDataFormat(DaqHandleT handle, DaqAdcRawDataFormatT rawFormat,

DaqAdcPostProcDataFormatT postProcFormat);
Visual BASIC VBdaqAdcSetDataFormat &(ByVal handle&, ByVal rawFormat&, ByVal postProcFormat&)

Delphi daqAdcSetDataFormat(Handle:DaqHandleT; rawFormat:DaqAdcRawDataFormatT rawFormat;
postProcFormat:DaqAdcPostProcDataFormatT);

Parameters
handle The handle to the device for which to set the option
rawFormat The channel number on the device for which the option is to be set
postProcFormat Flags specifying the options to use
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqCvtRawDataFormat,daqCvtRawDataFormat

Program References None
Used With All devices

daqAdcSetDataFormat allows the setting of the raw and the post-acquisition data formats
which will be returned by the acquisition transfer functions. Note: Certain devices may be limited to
the types of raw and post-acquisition data formats which can be presented.

The rawFormat parameter indicates how the raw data format is to be presented. Normally, the
raw-data format represents the data from the A/D converter. The default value for this parameter is
DardfNative where the raw-data format follows the native-data format of the A/D for the
particular device. An optional parameter is DardfPacked where raw A/D values are compressed
to make full use of all unused bits for any native format that leaves unused bits in the byte-aligned
count value. For instance, a 12-bit raw A/D value (which would normally be represented in a 16-bit
word, 2-byte count value) will be compressed so that 4 12-bit A/D raw counts can be represented in
3 16-bit word count values. Currently, only the WaveBook/512 supports this packed format (used
with the generic functions of the form daqAdcTransfer…).

The postProcFormat parameter specifies the format for which post-acquisition data will be
presented. This format is used by the one-step functions of the form daqAdcRd…. The default
value is DappdfRaw where the post-acquisition data format will follow the rawFormat
parameter.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-13

daqAdcSetDiskFile
DLL Function daqAdcSetDiskFile(DaqHandleT handle, LPSTR filename, DaqAdcOpenMode openMode,

DWORD preWrite);
C daqAdcSetDiskFile(DaqHandleT handle, LPSTR filename, DaqAdcOpenMode openMode,

DWORD preWrite);
Visual BASIC VBdaqAdcSetDiskFile&(ByVal handle&, ByVal filename$, ByVal openMode&, ByVal

preWrite&)
Delphi daqAdcSetDiskFile(handle:DaqHandleT; filename:PChar; openMode:DaqAdcOpenMode;

preWrite:DWORD)
Parameters
handle Handle to the device for which direct to disk ADC acquisition is to be performed.
filename String representing the path and name of the file to place the raw ADC acquisition data.
openMode Specifies how to open the file for writing
preWrite Specifies the amount to pre-write(in bytes) the file
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcTransferGetStat, daqAdcTransferSetBuffer, daqAdcTransferStart,

daqAdcTransferStop
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcSetDiskFile allows you to set a destination file for ADC data transfers. ADC data
transfers will be directed to the specified disk file. The filename parameter is a string
representing the path\name of the file to be opened. The openMode parameter indicates how the
file is to be opened for writing data. Valid file open modes are defined as follows:

• DaomAppendFile - Open an existing file to append subsequent ADC transfers. This mode
should only be used when the existing file has a similar ADC channel group configuration as
the subsequent transfers.

• DoamWriteFile - Rewrite or write over an existing file. This operation will destroy the
original contents of the file.

• DoamCreateFile- Create a new file for subsequent ADC transfers. This mode does not
require that the file exist beforehand.

The preWrite parameter may, optionally, be used to specify the amount that the file is to be pre-
written before the actual data collection begins. Specifying the pre-write amount may increase the
data-to-disk performance of the acquisition if it is known beforehand how much data will be
collected. If no pre-write is to be done, then the preWrite parameter should be set to 0.

daqAdcSetFreq
DLL Function daqAdcSetFreq(DaqHandleT handle, FLOAT freq);

C daqAdcSetFreq(DaqHandleT handle, FLOAT freq);

Visual BASIC VBdaqAdcSetFreq&(ByVal handle&, ByVal freq!)

Delphi daqAdcSetFreq(handle:DaqHandleT; freq:single)

Parameters
handle Handle to the device for which the ADC acquisition frequency is to be set.
freq The sampling frequency in Hz

Valid values: 100000.0 - 0.0002
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcGetFreq, daqAdcSetClockSource

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcSetFreq calculates and sets the frequency of the pacer clock using the frequency
specified in Hz. The frequency is converted to two counter values that control the frequency of the
pacer clock (in this conversion, some resolution of the frequency may be lost). daqAdcRdFreq
can be used to read the exact frequency setting of the pacer clock. daqAdcSetClock can be used
to explicitly set the two counter values of the pacer clock. The pacer clock can be used to control
the sampling rate of the A/D converter.

WaveBook Command Reference (Enhanced API) Chapter 12

12-14 WaveBook User’s Manual

daqAdcSetMux
DLL Function daqAdcSetMux(DaqHandleT handle, DWORD startChan, DWORD endChan, DaqAdcGain gain,

DWORD flags);
C daqAdcSetMux(DaqHandleT handle, DWORD startChan, DWORD endChan, DaqAdcGain gain,

DWORD flags);
Visual BASIC VBdaqAdcSetMux&(ByVal handle&, ByVal startChan&, ByVal endChan&, ByVal gain&,

ByVal flags&)
Delphi daqAdcSetMux(handle:DaqHandleT; startChan:DWORD; endChan:DWORD; const

gain:DaqAdcGain; flags:DWORD)
Parameters
handle Handle to the device for which to configure the ADC channel scan group
startChan The starting channel of the scan group
endChan The ending channel of the scan group
gain The gain value for all channels
flags Channel configuration flags in the form of a bit mask
Returns DerrInvGain - Invalid gain

DerrIncChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 12-42)

See Also daqAdcSetScan, daqAdcGetScan

Program References DACEX1.C, DAQEX.FRM (VB)
Used With All devices

daqAdcSetMux sets a simple scan sequence of local A/D channels from startChan to
endChan with the specified gain value. This command provides a simple alternative to
daqAdcSetScan if only consecutive channels need to be acquired. The flags parameter is used
to set channel dependent options. See ADC Flags Definition table for channel flags definitions.

daqAdcSetRate
DLL Function daqAdcSetRate(DaqHandleT handle, DaqAdcRateMode mode, DaqAdcAcqState acqState,

FLOAT reqRate, PFLOAT actualRate);
C daqAdcSetRate(DaqHandleT handle, DaqAdcRateMode mode, DaqAdcAcqState acqState,

FLOAT reqRate, PFLOAT actualRate);
Visual BASIC VBdaqAdcSetRate(ByVal handle&, ByVal mode&, ByVal acqState&, ByVal reqRate!,

actualRate!);
Delphi daqAdcSetRate(handle: DaqHandleT; mode: DaqAdcRateMode, acqState:

DaqAdcAcqState; reqRate:FLOAT; actualRate:PFLOAT);
Parameters
handle Handle to the device for which to set ADC scanning frequency.
mode Specifies the rate mode (frequency or period).
acqState Specifies the acquisition state to which the rate is to be applied.
reqRate Specifies the requested rate.
actualRate Returns the actual rate applied. This may be different from the requested rate.
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcSetAcq, daqAdcSetTrig, daqAdcArm, daqAdcSetFreq, daqAdcGetFreq

Program References
Used With All devices

daqAdcSetRate configures the ADC scan rate using the rate mode specified by the mode
parameter. Currently, the valid modes are:

• DarmPeriod - Defines the requested rate to be in periods/sec.
• • DarmFrequency - Defines the requested rate to be a frequency.

This function will set the ADC acquisition rate requested by the reqRate parameter for the
acquisition state specified by the acqState parameter. Currently, the following acquisition states
are valid:

• DaasPreTrig - Sets the pre-trigger ADC acquisition rate to the requested rate.
• DaasPostTrig - Sets the post-trigger ADC acquisition rate to the requested rate.

If the requested rate is unattainable on the specified device, a rate will be automatically adjusted to
the device’s closest attainable rate. If this occurs, the actualRate parameter will return the actual
rate for which the device has been programmed.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-15

daqAdcSetScan
DLL Function daqAdcSetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, DWORD chanCount);
C daqAdcSetScan(DaqHandleT handle, PDWORD channels, DaqAdcGain *gains, PDWORD

flags, DWORD chanCount);
Visual BASIC VBdaqAdcSetScan&(ByVal handle&, channels&(), gains&(), flags&(), ByVal

chanCount&)
Delphi daqAdcSetScan(handle:DaqHandleT; channels:PDWORD; gains:DaqAdcGainP;

flags:PDWORD; chanCount:DWORD)
Parameters
handle Handle to the device for which ADC scan group is to be configured
channels An array of up to 512 channel numbers
*gains An array of up to 512 gain values
flags Channel configuration flags in the form of a bit mask
chanCount The number of values in the chans and gains arrays

Valid values: 1 -512
Returns DerrNotCapable - No high speed digital

DerrInvGain - Invalid gain
DerrInvChan - Invalid channel
DerrNoError - No error (also, refer to API Error Codes on page 12-42)

See Also daqAdcGetScan, daqAdcSetMux

Program References ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

DaqAdcSetScan configures an A/D scan group consisting of multiple channels. As many as 512
channel entries can be made in the A/D scan group configuration. Any analog input channel can be
included in the scan group configuration at any valid gain setting. Scan group configuration may be
composed of local or expansion channels and (for the DaqBook/DaqBoard) the high-speed digital
I/O port.

The channels parameter is a pointer to an array of up to 512 channel values. Each entry
represents a channel number in the scan group configuration. Channels can be entered multiple
times at the same or different gain setting.

The gains parameter is a pointer to an array of up to 512 gain settings. Each gain entry represents
the gain to be used with the corresponding channel entry. Gain entry can be any valid gain setting
for the corresponding channel.

The flags parameter is a pointer to an array of up to 512 channel flag settings. Each flag entry
represents a 4-byte-wide bit map of channel configuration settings for the corresponding channel
entry. The channel flags can be used to set channel specific configuration settings (such as polarity).
See the ADC Flags Definition table for valid channel flag values.

The chanCount parameter represents the total number of channels in the scan group configuration.
This number also represents the number of entries in each of the channels, gains and flags
arrays.

WaveBook Command Reference (Enhanced API) Chapter 12

12-16 WaveBook User’s Manual

daqAdcSetTrig
DLL Function daqAdcSetTrig(DaqHandleT handle, DaqAdcTriggerSource triggerSource, BOOL rising,

WORD level, WORD hysteresis, DWORD channel);
C daqAdcSetTrig(DaqHandleT handle, DaqAdcTriggerSource triggerSource, BOOL rising,

WORD level, WORD hysteresis, DWORD channel);
Visual BASIC VBdaqAdcSetTrig&(ByVal handle&, ByVal triggerSource&, ByVal rising&, ByVal

level%, ByVal hysteresis%, ByVal channel&)
Delphi daqAdcSetTrig(handle:DaqHandleT; triggerSource:DaqAdcTriggerSource;

rising:longbool; level:WORD; hysteresis:WORD; channel:DWORD)
Parameters
handle Handle to the device for which the ADC acquisition trigger is to be configured.
triggerSource Sets the trigger source.
rising Boolean flag to indicate the rising or falling edge for the trigger source
level The trigger level (in A/D counts) for an analog level trigger
hysteresis hysteresis value for analog level trigger (if selected)
channel Channel for which the analog level trigger(if selected) is to be detected.
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcSetAcq

Program References ADCEX1.C, DACEX1.C, DAQEX.FRM (VB), ADCEX.PAS, ERREX.PAS (Delphi)
Used With All devices

daqAdcSetTrig sets and arms the trigger of the A/D converter. Several trigger sources and
several mode flags can be used for a variety of acquisitions. daqAdcSetTrig will stop current
acquisitions, empty acquired data, and arm the Daq* using the specified trigger.

Trigger detection for the given trigger source will not begin until the acquisition has been armed
with the daqAdcArm function. Trigger sources may be defined as follows:

• DatsImmediate - Trigger the acquisition immediately upon issuance of the daqAdcArm
function. This trigger mode is used to begin collecting data immediately upon configuration
of the acquisition.

• DatsSoftware - Trigger the acquisition upon issuance of the daqAdcSoftTrig function.
This trigger mode can be used to initiate a trigger upon some form of user or application
program input.

• DatsAdcClock - Trigger the acquisition upon ADC pacer clock input. This trigger mode
can be used to synchronize the trigger event with the ADC pacer clock.

• DatsExternalTTL - Trigger the acquisition upon sensing a rising or falling (depending
on state of rising flag) signal on an external TTL input signal (trig0 - pin 25 on P1).

• DatsHardwareAnalog - Trigger upon detection of a rising or falling (depending on the
state of the rising flag) analog signal (whose count is defined by the level parameter).
This trigger mode is detected in hardware to allow generally faster acquisition frequencies
than the DatsSoftwareAnalog trigger source. However, use of this mode is restricted to
channel level triggering on only the first channel within the channel scan (defined by the
channel parameter). Note: This mode is not available on Daq PCMCIA product lines.

• DatsSoftwareAnalog - Trigger upon detection of a rising or falling (depending on the
state of the rising flag) analog signal (whose count is defined by the level parameter).
This trigger mode is detected in software and generally will not allow the acquisition speeds of
the DatsHardwareAnalog trigger source. However, this mode has no trigger channel
restrictions. Any valid channel in the scan group can be configured as the trigger channel by
specifying it in the channel parameter.

Note: The level parameter is only used for the analog trigger modes. level is a count
representing the A/D count level trigger threshold to be passed through in order to satisfy the analog
trigger event. A number of factors are used to determine its proper value. For help in calculating
this analog count level properly, see the daqAdcCalcTrig function.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-17

daqAdcSetTrigEnhanced
DLL Function daqAdcSetTrigEnhanced(DaqHandleT handle, DaqAdcTriggerSource *triggerSources,

PDWORD gains, PDWORD adcRanges, DaqEnhTrigDef trigDef, PFLOAT levels, PFLOAT
hysteresis, PDWORD channels,DWORD chanCount, char *opStr);

C daqAdcSetTrigEnhanced(DaqHandleT handle, DaqAdcTriggerSource *triggerSources,
PDWORD gains, PDWORD adcRanges, DaqEnhTrigDef trigSense, PFLOAT levels, PFLOAT
hysteresis, PDWORD channels,DWORD chanCount, char *opStr);

Visual BASIC VBdaqAdcSetTrigEnhanced&(ByVal handle&, triggerSources&, gains&, adcRanges&,
trigSense&, levels!, hysteresis!, channels&, chanCount&, opStr$)

Delphi daqAdcSetTrigEnahanced(handle:DaqHandleT; triggerSources:DaqAdcTriggerSource;
gains: PDWORD; adcRanges: PDWORD; trigSense:DaqEnhTrigDef; levels : PFLOAT;

 hysteresis : PFLOAT; channels:PDWORD; chanCount:DWORD; opStr: String)
Parameters
handle Handle to the device for which the ADC acquisition trigger is to be configured.
triggerSource A pointer to an array of trigger sources for each defined trigger channel.
gains A pointer to an array of gains for each defined A/D trigger channel.
levels A pointer to an array of A/D analog trigger levels for each defined A/D trigger channel.
hysteresis A pointer to an array of hysteresis values for each defined A/D trigger channel.
trigSense A pointer to an array of trigger sensitivity flags for each defined A/D channel trigger source.
adcRanges A pointer to an array of polarity flag definitions for each defined A/D channel.
channels A pointer to an array of trigger channels representing the actual A/D trigger channels to trigger on.
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcSetAcq, daqAdcSetTrig, daqAdcSetScan

Program References
Used With WaveBook/512, WaveBook/516

daqAdcSetTrigEnhanced configures the device for enhanced triggering. Enhanced trigger
configuration allows the device to be configured to detect A/D triggering formed with multiple A/D
channel trigger-event conditions. The enhanced trigger event may be defined as a combination of
multiple A/D analog-level event conditions that are logically and’d or or’d.

The trigger event is formulated based on the channel trigger event for each channel in the trigger
sequence. The total number of trigger channels is defined by the chanCount parameter. Each
channel trigger configuration parameter definition is a pointer to an array of chanCount length and
is defined as follows:

• channels - Defines a pointer to an array of actual A/D channel numbers for which to
configure the corresponding trigger events.

• triggerSources - Defines a pointer to an array of trigger sources for which to configure
the corresponding A/D trigger events for the corresponding channel in the channels array. See
the ADC Trigger Source Definitions table for valid triggers.

• gains - Defines a pointer to an array of gains corresponding to the actual A/D channels in
the corresponding A/D channel number in the channels array.

• adcRanges - Defines a pointer to an array of A/D ranges for the A/D channels defined in the
corresponding channels array.

• hysteresis - Defines a pointer to an array of hysteresis values for each corresponding A/D
channel defined in the channels array.

• levels - Defines a pointer to an array of A/D levels for which, when satisfied, will set the
trigger event for the corresponding channel defined in the channels array.

• opStr - Defines a string that defines the logical relationship between the individual channel
trigger events and the global A/D trigger condition. Currently, the string can be defined as “*”
 to perform an and operation or “+” to perform an or operation on the individual channel
trigger events to formulate the global A/D trigger condition.

• trigSense - Defines an array of trigger sensitivity definitions for satisfying the defined
trigger event for the corresponding channel defined in the channels array. Currently, the valid
trigger sensitivity values are as follows:

DatdRisingEdge Trigger the channel on the rising edge of the signal at the specified level.
DatdFallingEdge Trigger the channel on the falling edge of the signal at the specified level.
DatdAboveLevel Trigger the channel when the signal is above the specified level.
DatdBelowLowel Trigger the channel when the signal is below the specified level.
DatdRisingEdgeLatched Trigger the channel on the rising edge of the signal at the specified level

and latch the channel trigger event.

WaveBook Command Reference (Enhanced API) Chapter 12

12-18 WaveBook User’s Manual

DatdFallingEdgeLatched Trigger the channel on the falling edge of the signal at the specified level
and latch the channel trigger event.

DatdAboveLevelLatched Trigger the channel when the signal is above at the specified level and
latch the channel trigger event.

DatdBelowLevelLatched Trigger the channel when the signal is below at the specified level and
latch the channel trigger event.

Note: The …Latched trigger sensitivities indicate the device will maintain the trigger event for the given
channel regardless of subsequent states of the input signal. After the channel has triggered, it will remain
in a triggered state while the current acquisition is active. The non-latched trigger sensitivities will only
indicate a channel trigger event while the input signal for the given channel is in the triggered state.

daqAdcSoftTrig
DLL Function daqAdcSoftTrig(DaqHandleT handle);

C daqAdcSoftTrig(DaqHandleT handle);

Visual BASIC VBdaqAdcSoftTrig&(ByVal handle&)

Delphi daqAdcSoftTrig(handle:DaqHandleT)

Parameters
handle Handle to the device to which the ADC software trigger is to be applied
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcSetTrig, daqAdcSetAcq

Program References None
Used With All devices

daqAdcSoftTrig is used to send a software trigger command to the Daq* device. This software
trigger can be used to initiate a scan or an acquisition from a program after configuring the software
trigger as the trigger source. This function may only be used if the trigger source for the acquisition
has been set to DatsSoftware with the daqAdcSetTrig function.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-19

daqAdcTransferBufData

DLL Function daqAdcTransferBufData(DaqHandleT handle, PWORD buf, DWORD scanCount,
DaqAdcBufferXferMask bufMask, PDWORD retCount);

C daqAdcTransferBufData(DaqHandleT handle, PWORD buf, DWORD scanCount,
DaqAdcBufferXferMask bufMask, PDWORD retCount);

Visual BASIC VBdaqAdcTransferBufData(ByVal handle, buf%, ByVal scanCount&, ByVal bufMask&,
retCount&);

Delphi daqAdcTransferBufData(handle: DaqHandleT; buf : PWORD, scanCount : DWORD,
bufMask: DaqAdcBufferXferMask; retCount: PDWORD);

Parameters
handle Handle to the device for which the ADC buffer should be retrieved.
buf Pointer to an application-supplied buffer to place the buffered data.
scanCount Number of scans to retrieve from the acquisition buffer.
bufMask A mask defining operation depending on the current state of the acquisition buffer
retCount A pointer to the total number of scans returned, if any.
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcTransferSetBuffer, daqAdcTransferGetStat

Program References ADCEX9.C, ADCEX10.C
Used With All devices

daqAdcTransferBufData requests a transfer of scanCount scans from the driver-allocated
ADC acquisition buffer to the specified user-supplied buffer. The bufMask parameter can be used
to specify the conditions for the transfer as follows:

• DabtmWait - Instructs the function to wait until the requested number of scans are available
in the driver-allocated acquisition buffer. When the requested number of scans are available,
the function will return with retCount set to scanCount, the number of scans requested.
ADC data will be returned in the memory referred to by the buf parameter.

• DabtmNoWait - Instructs the function to return immediately if the specified number of scans
are not available when the function is called. If the entire amount requested is not available,
the function will return with no data and retCount will be set to 0. If the requested number
of scans are available in ADC acquisition buffer, the function will return with retCount set
to scanCount, the number of scans requested. ADC data will be returned in the memory
referred to by the buf parameter.

• DabtmRetAvail - Instructs the function to return immediately, regardless of the number of
scans available in the driver-allocated acquisition buffer. The retCount parameter will
return the total number of scans retrieved. retCount can return anything from 0 to
scanCount, the number of scans requested. ADC data will be returned in the memory
referred to by the buf parameter.

The driver-allocated acquisition buffer must have been allocated prior to calling this function. This
is performed via the daqAdcTransferSetBuffer. Refer to daqAdcTransferSetBuffer
for more details on specifying the driver-allocated acquisition buffer.

WaveBook Command Reference (Enhanced API) Chapter 12

12-20 WaveBook User’s Manual

daqAdcTransferGetStat
DLL Function daqAdcTransferGetStat(DaqHandleT handle, PDWORD active, PDWORD retCount);

C daqAdcTransferGetStat(DaqHandleT handle, PDWORD active, PDWORD retCount);

Visual BASIC VBdaqAdcTransferGetStat&(ByVal handle&, active&, retCount&)

Delphi daqAdcTransferGetStat(handle:DaqHandleT; var active:DWORD; var retCount:DWORD)

Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
active A pointer to the transfer-state flags in the form of a bit mask
retCount A pointer to the total number of ADC scans acquired (or available) in the current transfer
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcTransferSetBuffer, daqAdcTransferStart, daqAdcTransferStop

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcTransferGetStat allows you to retrieve the current state of an ADC acquisition
transfer.

The active parameter will indicate the current state of the transfer in the form of a bit mask. Refer
to the ADC Acquisition/Transfer Active Flag Definitions (in the ADC Miscellaneous Definitions
table) for valid bit-mask states.

The retCount parameter will return the total number of scans acquired in the current transfer if
the transfer is in user-allocated buffer mode or will return the total number of unread scans in the
acquisition buffer if the transfer is in driver-allocated buffer mode. Refer to the
daqAdcTransferSetBuffer function for more information on buffer allocation modes.

The transfer state and return count values will continue to be updated until any of the following
occurs:

• the transfer count is satisfied
• the transfer is stopped (daqAdcStopTransfer)
• the acquisition is disarmed (daqDisarm)

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-21

daqAdcTransferSetBuffer
DLL Function DaqAdcTransferSetBuffer(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

transferMask);
C DaqAdcTransferSetBuffer(DaqHandleT handle, PWORD buf, DWORD scanCount, DWORD

transferMask);
Visual BASIC VBdaqAdcTransferSetBufferAllocMem&(ByVal handle&, ByVal scanCount&, ByVal

transferMask&)
Delphi daqAdcTransferSetBufferAllocMem(handle:DaqHandleT; scanCount:DWORD;

transferMask:DWORD)
Parameters
handle Handle to the device for which an ADC transfer is to be performed.
buf Pointer to the buffer for which the acquired data is to be placed.
scanCount The total length of the buffer (in scans).
transferMask Configures the buffer transfer mode.
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcTransferStart, daqAdcTransferStop, daqAdcTransferGetStat, daqAdcSetAcq,

daqAdcTransferBufData
Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi), ADCEX9.C, ADCEX10.C
Used With All devices

daqAdcTransferSetBuffer allows you to configure transfer buffers for ADC data
acquisition. This function can be used to configure the specified user- or driver-allocated buffers for
subsequent ADC transfers.

If a user-allocated buffer is to be used, two conditions apply:
• The buffer specified by the buf parameter must have already been allocated by the user

prior to calling this function.
• The allocated buffer must be large enough to hold the number of ADC scans as determined

by the current ADC scan group configuration.

The scanCount parameter is the total length of the transfer buffer in scans. The scan size is
determined by the current scan group configuration. Refer to the daqAdcSetScan and
daqAdcSetMux functions for further information on scan group configuration.

The character of the transfer can be configured via the transferMask parameter. Among other
things, the transferMask specifies the update, layout/usage, and allocation modes of the buffer.
The modes can be set as follows:

• DatmCycleOn - Specifies the buffer to be a circular buffer in buffer-cycle mode; allows the
transfer to continue when the end of the transfer buffer is reached by wrapping the transfer of
ADC data back to the beginning of the buffer. In this mode, the ADC transfer buffer will
continue to be wrapped until the post-trigger count has been reached (specified by
daqAdcSetAcq) or the transfer/acquisition is halted by the application
(daqAdcTransferStop, daqAdcDisarm). The default setting is DatmCycleOff.

• DatmUpdateSingle - Specifies the update mode as single sample. The update mode can
be set to update for every sample or for every block of ADC data. The update-on-single
setting allows the ADC transfer buffer to be updated for each sample collected by the ADC.
Compared to the block mode, this setting provides a higher degree of real-time transfer-buffer
updating at the expense of slower aggregate-data throughput rates. The default setting is
DatmUpdateBlock.

• DatmDriverBuf - Specifies that the driver allocate the ADC acquisition buffer as a circular
buffer whose length is determined by the scanCount parameter with current scan group
configuration. This option allows the driver to manage the circular acquisition buffer rather
than placing the burden of buffer management on the user. This option should be used with
the daqAdcTransferBufData to access the ADC acquisition buffer. The
daqAdcTransferStop or the daqAdcDisarm function will stop the current transfer and
de-allocate the driver-supplied ADC acquisition buffer. The default setting is
DatmUserBuf. The DatmUserBuf option specifies a user-allocated ADC acquisition
buffer. Here, buffer management must be done in user code. This option should be used with
the daqAdcTransferStart function to perform the ADC data transfer operation.

WaveBook Command Reference (Enhanced API) Chapter 12

12-22 WaveBook User’s Manual

daqAdcTransferStart
DLL Function daqAdcTransferStart(DaqHandleT handle);

C daqAdcTransferStart(DaqHandleT handle);

Visual BASIC VBdaqAdcTransferStart&(ByVal handle&)

Delphi daqAdcTransferStart(handle:DaqHandleT)

Parameters
handle Handle to the device to initiate an ADC transfer
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcTranferSetBuffer, daqAdcTransferGetStat, daqAdcTransferStop

Program References ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqAdcTransferStart allows you to initiate an ADC acquisition transfer. The transfer will be
performed under the current active acquisition. If no acquisition is currently active, the transfer will
not initiate until an acquisition becomes active (via the daqAdcArm function). The transfer will be
characterized by the current settings for the transfer buffer. The transfer buffer can be configured
via the daqAdcSetTransferBuffer function.

daqAdcTransferStop
DLL Function daqAdcTransferStop(DaqHandleT handle);

C daqAdcTransferStop(DaqHandleT handle);

Visual BASIC VBdaqAdcTransferStop&(ByVal handle&)

Delphi daqAdcTransferStop(handle:DaqHandleT)

Parameters
handle Handle to the device for which the Adc data transfer is to be stopped
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcTransferSetBuffer, daqAdcTransferStart, daqAdcTransferGetStat

Program References None
Used With All devices

daqAdcTransferStop allows you to stop a current ADC buffer transfer, if one is active. The
current transfer will be halted and no more data will transfer into the transfer buffer. Though the
transfer is stopped, the acquisition will remain active. Transfers can be re-initiated with
daqAdcStartTransfer after the stop, as long as the current acquisition remains active. The
acquisition can be halted by calling the daqAdcDisarm function.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-23

daqCalGetConstants
DLL Function daqCalGetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain,

DaqAdcRangeT range, PWORD gainConstant, PSHORT offsetConstant);
C daqCalGetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain,

DaqAdcRangeT range, PWORD gainConstant, PSHORT offsetConstant);
Visual BASIC VBdaqCalGetConstants(ByVal handle&, ByVal channel&, ByVal gain&, ByVal range&,

al gainConstant%, offsetConstant%);
Delphi daqCalGetConstants(handle: DaqHandleT;channel:DWORD; gain: DaqAdcGain; range:

DaqAdcRangeT; gainConstant:PWORD; offsetConstant:PSHORT);
Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
channel Channel number to apply the calibration settings
gain Gain range to apply the calibration settings
range A/D input range to apply the calibration settings
gain Pointer to the gain value for the current entry
offset Pointer to the offset value for the current entry
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqCalSetConstants, daqCalSelectCalTable,

daqCalSelectInputSignal,daqCalSaveConstants
Program References None
Used With WaveBook/512, WaveBook/516

daqCalGetConstants gets the calibration constants from the currently selected calibration table
chosen by the daqCalSetConstants command.

The user-calibration constants are gains and offsets that are applied to the input data. The data
comes in, is multiplied by the gain, then the offset is added to it. The resulting data is the conversion
between the raw A/D data and the data that is presented during the acquisition. Each channel, gain,
and bipolar/unipolar setting has a different pair of gain and offset values. The first three parameters
of the daqCalGetConstants function specify which set of constants are to be retrieved. The
last two parameters are the actual constants. These constants are in a particular binary format. The
gain constant is 32768 times the gain. For a gain of ×1, the gain constant is 32768 or 0x8000. The
maximum gain is approximately ×2 (65535/32768), and the minimum gain is ×0 (0/32768). The
offset (a left-justified signed 12-bit number) is added to the final result. A single least-significant bit
has an integer value of 16 or 0x0010.

daqCalSaveConstants
DLL Function daqCalSaveConstants(DaqHandleT handle, DWORD channel);

C daqCalSaveConstants(DaqHandleT handle, DWORD channel);

Visual BASIC VBdaqCalSaveConstants(ByVal handle&, ByVal channel&)

Delphi daqCalSelectInputSignal(handle: DaqHandleT; channel: DWORD)

Parameters
handle Handle to the device for which the calibration constants are to be saved.
channel Channel to save to the current calibration settings for
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqCalGetConstants, daqCalSetConstants, daqCalSelectInputSignal,

daqCalSelectCalTable
Program References None
Used With WaveBook/512, WaveBook/516

daqCalSaveConstants will save the current calibration table as set by the
daqCalSelectCalTable routine. Current calibration constants can be updated or modified
with the daqCalSetConstants routine. The working calibration table should only be saved
after all desired calibration constants have been updated for the device.

WaveBook Command Reference (Enhanced API) Chapter 12

12-24 WaveBook User’s Manual

daqCalSelectCalTable
DLL Function daqCalSelectCalTable(DaqHandleT handle, DaqCalTableTypeT tableType);

C daqCalSelectCalTable(DaqHandleT handle, DaqCalTableTypeT tableType);

Visual BASIC VBdaqCalSelectCalTable(ByVal handle&, ByVal tableType as DaqCalTableTypeT)

Delphi daqCalSelectCalTable(handle: DaqHandleT; tableType : DaqCalTableTypeT)

Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
tableType Calibration table type to use
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqCalGetConstants, daqCalSetConstants, daqCalSelectInputSignal,

daqCalSaveConstants
Program References None
Used With WaveBook/512, WaveBook/516

daqCalSelectCalTable allows the selection of the calibration-table source for the device.
Currently, there are two valid calibration-table types which are selected via the tableType
parameter:

• DcttFactory - Selects the factory calibration table. The factory calibration table reflects
factory calibration constants for the selected device. This is the default setting.

• DcttUser - Selects the user-calibration table. The user-calibration table reflects calibration
constants defined by the user or the device’s user-calibration application. Refer to the
calibration documentation for specific settings.

This function should be used to set the current calibration table for the device. The current
calibration table at any time will be set to the calibration table last selected during the current device
session.

daqCalSelectInputSignal
DLL Function daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);

C daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);

Visual BASIC VBdaqCalSelectInputSignal(ByVal handle&, ByVal input as DaqCalInputT)

Delphi daqCalSelectInputSignal(handle: DaqHandleT; input: DaqCalInputT)

Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
input Calibration input signal source to use
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqCalGetConstants, daqCalSetConstants, daqCalSelectCalTable,

daqCalSaveConstants
Program References None
Used With WaveBook/512, WaveBook/516

daqCalSelectInputSignal allows the selection of the input signal source for user calibration.
The input signal source is specified by the input parameter. Please refer to the Calibration Input
Signal Sources table for valid parameters on input signal sources.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-25

daqCalSetConstants
DLL Function daqCalSetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain,

DaqAdcRangeT range, WORD gainConstant, SHORT offsetConstant);
C daqCalSetConstants(DaqHandleT handle, DWORD channel, DaqAdcGain gain,

DaqAdcRangeT range, WORD gainConstant, SHORT offsetConstant);
Visual BASIC VBdaqCalSetConstants(ByVal handle&, ByVal channel&, ByVal gain&, ByVal range&,

ByVal gainConstant%, ByVal offsetConstant%);
Delphi daqCalSetConstants(handle: DaqHandleT;channel:DWORD; gain: DaqAdcGain; range:

DaqAdcRangeT; gainConstant:WORD; offsetConstant:SHORT);
Parameters
handle Handle to the device for which ADC transfer status is to be retrieved
channel Channel number to apply the calibration settings
gain Gain range to apply the calibration settings
range A/D input range to apply the calibration settings
gain Gain value to apply
offset Offset value to apply
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqCalGetConstants, daqCalSelectCalTable,

daqCalSelectInputSignal,daqCalSaveConstants
Program References None
Used With WaveBook/512, WaveBook/516

daqCalSetConstants sets the user-accessible calibration constants. These calibration
constants are gains and offsets that are applied to the input data. The data comes in, is multiplied by
the gain, then the offset is added to it. The resulting data is the conversion between the raw A/D data
and the data that is presented during the acquisition. Each channel, gain, and bipolar/unipolar setting
has a different pair of gain and offset values. The first three parameters of the
daqCalSetConstants function specify which set of constants are to be changed. The last two
parameters are the actual constants. These constants are in a particular binary format. The gain
constant is 32768 times the gain. For a gain of ×1, the gain constant is 32768 or 0x8000. The
maximum gain is approximately ×2 (65535/32768), and the minimum gain is ×0 (0/32768). The
offset (a left-justified signed 12-bit number) is added to the final result. A single least-significant bit
has an integer value of 16 or 0x0010. Setting the calibration constants affects subsequent
acquisitions until another daqOpen is performed. After daqOpen, the original calibration
constants are re-read from the NVRAM in the WaveBook and expansion chassis; then, the working
copy as set by daqCalSetCalConstants is overwritten.

daqClose
DLL Function daqClose(DaqHandleT handle);

C daqClose(DaqHandleT handle);

Visual BASIC VBdaqClose&(ByVal handle&)

Delphi daqClose(handle:DaqHandleT)

Parameters
handle Handle to the device to be closed
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqOpen
Program References ADCEX1.C, DACEX1.C, DIGEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS, ERREX.PAS (Delphi)
Used With All devices

daqClose is used to close a Daq* device. Once the specified device has been closed, no
subsequent communication with the device can be performed. In order to re-establish
communications with a closed device, the device must be re-opened with the daqOpen function.

WaveBook Command Reference (Enhanced API) Chapter 12

12-26 WaveBook User’s Manual

daqCvtRawDataFormat
DLL Function daqCvtRawDataFormat(PWORD buf, DaqAdcCvtAction action, DWORD lastRetCount, DWORD

scanCount, DWORD chanCount);
C daqCvtRawDataFormat(PWORD buf, DaqAdcCvtAction action, DWORD lastRetCount, DWORD

scanCount, DWORD chanCount);
Visual BASIC VBdaqCvtRawDataFormat&(buf%, ByVal action&, ByVal lastRetCount&,ByVal

scanCount&, ByVal chanCount&)
Delphi daqCvtRawDataFormat(PWORD buf, action:DaqAdcCvtAction; lastRetCount:DWORD;

scanCount:DWORD: chanCount:DWORD);
Parameters
buf Pointer to the buffer containing the raw data
action The type of conversion action to perform on the raw data
lastRetCount The last retCount returned from daqAdcTransferGetStat
scanCount The length of the raw data buffer in scans
chanCount The number of channels per scan in the raw data buffer
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcSetDataFormat

Program References None
Used With All devices

daqCvtRawDataFormat allows the conversion of raw data to a specified format. This function
should be called after the raw data has been acquired. See the transfer data functions
(daqAdcTransfer…) for more details on the actual collection of raw data.

The buf parameter specifies the pointer to the data buffer containing the raw data. Prior to calling
this function, this user-allocated buffer should already contain the entire raw data transfer. Upon
completion, this data buffer will contain the converted data (the buffer must be able to contain all the
converted data).

The action parameter specifies the type of conversion to perform. The DacaUnpack value can
be used de-compress raw data. The DacaRotate can be used to reformat a circular buffer into a
linear buffer.

The scanCount parameter specifies the length of the raw buffer in scans. Since the converted data
will overwrite the raw data in the buffer, make sure the specified buffer is large enough, physically,
to contain all of the converted data.

The chanCount parameter specifies the number of channels in each scan.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-27

daqCvtSetAdcRange
DLL Function daqCvtSetAdcRange(FLOAT Admin, FLOAT Admax);

C daqCvtSetAdcRange(FLOAT Admin, FLOAT Admax);

Visual BASIC VBdaqCvtSetAdcRange&(ByVal ADmin!, ByVal ADmax!)

Delphi daqCvtSetAdcRange(Admin:single; Admax:single)

Parameters
Admin A/D minimum voltage range
Admax A/D maximum voltage range
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also
Program References None
Used With All devices

daqCvtSetAdcRange allows you to set the current ADC range for use by the daqCvt…
functions. This function should not need to be called if used for data collected by the Daq* devices.

daqDefaultErrorHandler
DLL Function daqDefaultErrorHandler(DaqHandleT handle, DaqError errCode);

C daqDefaultErrorHandler(DaqHandleT handle, DaqError errCode);

Visual BASIC VBdaqDefaultErrorHandler(ByVal handle&, ByVal errCode&)

Delphi daqDefaultErrorHandler(handle:DaqHandleT; errCode:DaqError)

Parameters
handle Handle to the device to which the default error handler is to be attached.
ErrCode The error code number of the detected error (see table API Error Codes at end of this chapter).
Returns Nothing (also, refer to API Error Codes on page 12-42)
See Also daqGetLastError, daqProcessError, daqSetDefaultErrorHandler

Program References None
Used With All devices

daqDefaultErrorHandler displays an error message and then exits the application program.
When the Daq* library is loaded, it invokes the default error handler whenever it encounters an
error. The error handler may be changed with daqSetErrorHandler.

daqFormatError
DLL Function daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);

C daqCalSelectInputSignal(DaqHandleT handle, DaqCalInputT input);

Visual BASIC VBdaqCalSelectInputSignal(ByVal handle&, ByVal input as DaqCalInputT)

Delphi daqCalSelectInputSignal(handle: DaqHandleT; input: DaqCalInputT)

Parameters
daqError Daq* Enhanced API error code
msg Pointer to a string to return the error text
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqSetDefaultErrorHandler, daqSetErrorHandler, daqProcessError, daqGetLastError,

daqDefaultErrorHandler
Program References None
Used With All devices

daqFormatError returns the text-string equivalent for the specified error condition. The error
condition is specified by the daqError parameter. The error text will be returned in the character
string pointed to by the msg parameter. The character string space must have been previously
allocated by the application before calling this function. The allocated character string should be, at
minimum, 64 bytes in length.

For more information on specific error codes refer to the API Error Codes on page 12-42.

WaveBook Command Reference (Enhanced API) Chapter 12

12-28 WaveBook User’s Manual

daqGetDeviceCount
DLL Function daqGetDeviceCount(PDWORD deviceCount);

C daqGetDeviceCount(PDWORD deviceCount);

Visual BASIC VBdaqGetDevice&(deviceCount&)

Delphi daqGetDeviceCount(var deviceCount:DWORD)

Parameters
deviceCount Pointer to which the device count is to be returned
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqGetDeviceList, daqGetDeviceProperties

Program References None
Used With All devices

daqGetDeviceCount returns the number of currently configured devices. This function will
return the number of devices currently configured in the system. The devices do not need to be
opened for this function to operate properly. If the number returned does not seem appropriate, the
device configuration list should be checked via the Daq* Configuration applet located in the Control
Panel. Refer to the configuration section in your device’s user manual for more details.

daqGetDeviceList
DLL Function daqGetDeviceList(DaqDeviceListT *deviceList, PDWORD deviceCount);

C daqGetDeviceList(DaqDeviceListT *deviceList, PDWORD deviceCount);

Visual BASIC VBdaqGetDeviceList(deviceList as DaqDeviceListT, deviceCount&)

Delphi daqGetDeviceList(var deviceList: DaqDeviceListT; var deviceCount: DWORD)

Parameters
deviceList Pointer to memory location to which the device list is to be returned
deviceCount Number of devices returned in the device list
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqGetDeviceCount, daqGetDeviceProperties, daqOpen,

Program References None
Used With All devices

daqGetDeviceList returns a list of currently configured devices. This function will return the
device names in the deviceList parameter for the number of devices returned by the
deviceCount parameter. Each deviceList entry contains a device name consisting of up to
64 characters. The device name can then be used with the daqOpen function to open the specific
device.

If the number returned does not seem appropriate, the device configuration list should be checked
via the Daq* Configuration applet located in the Control Panel. Refer to the configuration section in
your device’s user manual for more details.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-29

daqGetDeviceProperties
DLL Function daqGetDeviceProperties(LPSTR daqName, DaqDevicePropsT *deviceProps);

C daqGetDeviceProperties(LPSTR daqName, DaqDevicePropsT *deviceProps);

Visual BASIC VBdaqGetDeviceProperties(daqName$, deviceProps as DaqDevicePropsT)

Delphi daqGetDeviceProperties(daqName: string; var deviceProps: DaqDevicePropsT)

Parameters
daqName Pointer to a character string representing the name of the device for which to retrieve properties
deviceCount Number of devices returned in the device list
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqGetDeviceCount, daqGetDeviceList, daqOpen

Program References None
Used With All devices

daqGetDeviceProperties returns the properties for the specified device. The device is
specified by passing the name of the device in the daqName parameter. This name should be a
valid name of a configured device. The properties for the device are returned in the deviceProps
parameter. deviceProps is a pointer to user-allocated memory which will hold the device-
properties structure. This memory must have been allocated before calling this function.

For detailed device-property structure layout, refer the to Daq Device Properties Definition table.

If this function fails, make sure the daqName parameter references a valid device which is currently
configured. This can be checked via the Daq* Configuration applet located in the Control Panel.
Refer to the configuration section in your device’s user manual for more details.

daqGetDriverVersion
DLL Function daqGetDriverVersion(PDWORD version);

C daqGetDriverVersion(PDWORD version);

Visual BASIC VBdaqGetDriverVersion&(version&)

Delphi daqGetDriverVersion(var version:DWORD)

Parameters
version Pointer to the version number of the current device driver.
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqGetHardwareInfo

Program References ERREX.PAS (Delphi)
Used With All devices

daqGetDriverVersion allows you to get the revision level of the driver currently in use.

daqGetHardwareInfo
DLL Function daqGetHardwareInfo(DaqHandleT handle, DaqHardwareInfo whichInfo, VOID * info);

C daqGetHardwareInfo(DaqHandleT handle, DaqHardwareInfo whichInfo, VOID * info);

Visual BASIC VBdaqGetHardwareInfo&(ByVal handle&, ByVal whichInfo&, info As Variant)

Delphi daqGetHardwareInfo(handle:DaqHandleT; whichInfo:DaqHardwareInfo; info:pointer)

Parameters
handle Handle to the device
whichInfo Specifies what type of device information to retrieve
* info Pointer to the returned device information
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqGetDriverVersion, daqOpen

Program References DACEX.PAS, ERREX.PAS (Delphi)
Used With All devices

daqGetHardwareInfo allows you to retrieve specific hardware information for the specified
device. The device handle must be a valid device handle that is currently open. To open a device,
see the daqOpen function.

WaveBook Command Reference (Enhanced API) Chapter 12

12-30 WaveBook User’s Manual

daqGetLastError
DLL Function daqGetLastError(DaqHandleT handle, DaqError *errCode);

C daqGetLastError(DaqHandleT handle, DaqError *errCode);

Visual BASIC VBdaqGetLastError&(ByVal handle&, errCode&)

Delphi daqGetLastError(handle:DaqHandleT; var errCode:DaqError): DaqError; stdcall;
external DAQX_DLL; procedure daqDefaultErrorHandler(handle:DaqHandleT;
errCode:DaqError)

Parameters
handle Handle to the device
*errCode Returned last error code
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqDefaultErrorHandler, daqProcessError, daqSetDefaultErrorHandler

Program References None
Used With All devices

daqGetLastError allows you to retrieve the last error condition registered by the driver.

daqIORead
DLL Function daqIORead(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort,

DWORD whichDevice, DaqIOExpansionPort whichExpPort, PDWORD value);
C daqIORead(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort,

DWORD whichDevice, DaqIOExpansionPort whichExpPort, PDWORD value);
Visual BASIC VBdaqIOReadBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal

whichDevice&, ByVal whichExpPort&, ByVal bitNum&, bitValue&)
Delphi daqIOReadBit(handle:DaqHandleT; devType:DaqIODeviceType; dvPort:DaqIODevicePort;

whichDevice:DWORD; whichExpPort:DaqIOExpansionPort; bitNum:DWORD; var
bitValue:longbool)

Parameters
handle Handle to the device to perform the IO read
devType IO Device type
devPort IO port selection
whichDevice IO device instance to read from
whichExpPort IO device expansion port to read from
value IO value read
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqIOReadBit, daqIOWrite, daqIOWriteBit

Program References None
Used With All devices

daqIORead allows you to read the specified port on the selected device. The read operation will
return the current state of the port in the value parameter. Normally, if the selected port is a byte-
wide port, the port state will occupy the low-order byte of the value parameter. Digital IO
channels for the port correspond to each bit within this low-order byte. If the bit is set, it indicates
the channel is in a high state. If the bit is not set, the channel is indicated to be in a low state.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-31

daqIOReadBit
DLL Function daqIOReadBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort

devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum,
PBOOL bitValue);

C daqIOReadBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort
devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum,
PBOOL bitValue);

Visual BASIC VBdaqIOReadBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal
whichDevice&, ByVal whichExpPort&, ByVal bitNum&, bitValue&)

Delphi daqIOReadBit(handle:DaqHandleT; devType:DaqIODeviceType; dvPort:DaqIODevicePort;
whichDevice:DWORD; whichExpPort:DaqIOExpansionPort; bitNum:DWORD; var
bitValue:longbool)

Parameters
handle Handle to the device from which to perform the IO
devType IO Device type
devPort IO device port selection
whichDevice IO device selection
whichExpPort IO expansion port address
bitNum IO port bit location to read
bitValue IO port bit value (TRUE - high, FALSE - low)
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqIORead, daqIOWrite, daqIOWriteBit

Program References None
Used With All devices

daqIOReadBit allows you to read a specified bit on the selected device and port. The read
operation will return the current state of the selected bit in the bitValue parameter. The selected
bit (specified by the bitNum parameter) corresponds to the IO channel on the port which is to be
read. The bitValue will be TRUE indicating a high state or FALSE indicating a low state.

daqIOWrite
DLL Function daqIOWrite(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort,

DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD value);
C daqIOWrite(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort devPort,

DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD value);
Visual BASIC VBdaqIOWriteBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal

whichDevice&, ByVal whichExpPort&, ByVal bitNum&, ByVal bitValue&)
Delphi daqIOWriteBit(handle:DaqHandleT; devType:DaqIODeviceType;

dvPort:DaqIODevicePort; whichDevice:DWORD; whichExpPort:DaqIOExpansionPort;
bitNum:DWORD; bitValue:longbool)

Parameters
handle Handle of the device to perform an IO write operation
devType IO device type
devPort IO device port selection
whichDevice IO device selection
whichExpPort IO device expansion port address
value Value to write
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqIORead, daqIOWriteBit, daqIOReadBit

Program References None
Used With All devices

daqIOWrite allows you to write to the specified port on the selected device. The write operation
will write the settings indicated in the value parameter to the selected port. The value written
will depend on the width of the selected port. Normally, for byte-wide ports, only the low-order byte
of the value parameter will be written. The IO channels for the port correspond to each bit within
the value written. If the channel is to be driven to a high state, then the corresponding bit should be
set. Likewise, if the channel is to be driven to a low state, then the corresponding bit should not be
set.

WaveBook Command Reference (Enhanced API) Chapter 12

12-32 WaveBook User’s Manual

daqIOWriteBit
DLL Function daqIOWriteBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort

devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum,
BOOL bitValue);

C daqIOWriteBit(DaqHandleT handle, DaqIODeviceType devType, DaqIODevicePort
devPort, DWORD whichDevice, DaqIOExpansionPort whichExpPort, DWORD bitNum,
BOOL bitValue);

Visual BASIC VBdaqIOWriteBit&(ByVal handle&, ByVal devType&, ByVal devPort&, ByVal
whichDevice&, ByVal whichExpPort&, ByVal bitNum&, ByVal bitValue&)

Delphi daqIOWriteBit(handle:DaqHandleT; devType:DaqIODeviceType;
dvPort:DaqIODevicePort; whichDevice:DWORD; whichExpPort:DaqIOExpansionPort;
bitNum:DWORD; bitValue:longbool)

Parameters
handle Handle of the device to perform an IO write to
devType IO device type
devPort IO device port selection
whichDevice IO device selection
whichExpPort IO device expansion port address
bitNum Bit number to write
bitValue Bit value to write (TRUE - high, FALSE - low)
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqIOWrite, daqIORead, daqIOReadBit

Program References None
Used With All devices

daqIOWriteBit allows you to write a specified bit on the selected device and port. The write
operation will write the specified bit value to the bit selected. The selected bit, specified by the
bitNum parameter, corresponds to the channel on the port for the IO to be driven. The bitValue
parameter should be set to TRUE to drive the channel to a high state or FALSE indicating a low
state.

daqOnline
DLL Function daqOnline(DaqHandleT handle, PBOOL online);

C daqOnline(DaqHandleT handle, PBOOL online);

Visual BASIC VBdaqOnline&(ByVal handle&, online&)

Delphi daqOnline(handle: DaqHandleT; var online: longbool)

Parameters
handle Handle of the device to test for online
online Boolean indicating whether the device is currently online
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqOpen, daqClose

Program References ERREX.PAS (Delphi)
Used With All devices

daqOnline allows you to determine if a device is online. The device handle must be a valid
device handle which has been opened using the daqOpen function. The online parameter
indicates the current online state of the device (TRUE - device online; FALSE - device not online).

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-33

daqOpen
DLL Function daqOpen(LPSTR daqName);

C daqOpen(LPSTR daqName);

Visual BASIC VBdaqOpen&(ByVal daqName$)

Delphi daqOpen(devName: PChar)

Parameters
daqName String representing the name of the device to be opened
Returns A handle to the specified device (also, refer to API Error Codes on page 12-42)
See Also daqClose, daqOnline

Program References ADCEX1.C, DIGEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ERREX.PAS, ADCEX.PAS (Delphi)
Used With

daqOpen allows you to open an installed Daq* device for operation. The daqOpen function will
initiate a session for the device name specified by the daqName parameter by opening the device,
initializing it, and preparing it for further operation. The daqName specified must reference a
currently configured device. See Daq* Configuration utility (in the …Installation chapters) for
more details on configuring devices and assigning device names.

daqOpen should be performed prior to any other operation performed on the device. This function
will return a device handle that is used by other functions to reference the device. Once the device
has been opened, the device handle should be used to perform subsequent operations on the device.

Most functions in this manual require a device handle in order to perform their operation. When the
device session is complete, daqClose may be called with the device handle to close the device
session.

daqProcessError
DLL Function daqProcessError(DaqHandleT handle, DaqError errCode);

C daqProcessError(DaqHandleT handle, DaqError errCode);

Visual BASIC VBdaqProcessError&(ByVal handle&, ByVal errCode&)

Delphi daqProcessError(handle:DaqHandleT; errCode:DaqError)

Parameters
handle Handle to the device for which the specified error is to be processed.
errCode Specifies the device error code to process
Returns Refer to API Error Codes on page 12-42
See Also daqSetDefaultErrorHandler, daqGetLastError, daqDefaultErrorHandler

Program References None
Used With All devices

daqProcessError allows an application to initiate an error for processing by the driver. This
command can be used when it is desirable for the application to initiate processing for a device-
defined error.

WaveBook Command Reference (Enhanced API) Chapter 12

12-34 WaveBook User’s Manual

daqSetDefaultErrorHandler
DLL Function daqSetDefaultErrorHandler(DaqErrorHandlerFPT handler);

C daqSetDefaultErrorHandler(DaqErrorHandlerFPT handler);

Visual BASIC VBdaqSetDefaultErrorHandler&(ByVal handler&)

Delphi daqSetDefaultErrorHandler(handler:DaqErrorHandlerFPT)

Parameters
handler Pointer to a user-defined error handler function.
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqDefaultErrorHandler, daqGetLastError, daqProcessError, daqSetErrorHandler

Program References ERREX.PAS (Delphi)
Used With All devices

daqSetDefaultErrorHandler allows you to set the driver to use the default error handler
specified for all devices.

daqSetErrorHandler
DLL Function daqSetErrorHandler(DaqHandleT handle, DaqErrorHandlerFPT handler);

C daqSetErrorHandler(DaqHandleT handle, DaqErrorHandlerFPT handler);

Visual BASIC VBdaqSetErrorHandler&(ByVal handle&, ByVal handler&)

Delphi daqSetErrorHandler(handle:DaqHandleT; handler:DaqErrorHandlerFPT)

Parameters
handle Handle to the device to which to attach the specified error handler
handler Pointer to a user defined error handler function.
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqSetDefaultErrorHandler, daqDefaultErrorHandler, daqGetLastError,

daqProcessError
Program References ADCEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ERREX.PAS (Delphi)
Used With All devices

daqSetErrorHandler specifies the routine to call when an error occurs in any command. The
default routine displays a message and then terminates the program. If this is not desirable, use this
command to specify your own routine to be called when errors occur. If you want no action to occur
when a command error is detected, use this command with a null (0) parameter. The default error
routine is daqDefaultHandler.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-35

daqSetOption
DLL Function daqSetOption(DaqHandleT handle, DWORD chan, DWORD flags, DaqOptionType

optionType, FLOAT optionValue);
C daqSetOption(DaqHandleT handle, DWORD chan, DWORD flags, DaqOptionType

optionType, FLOAT optionValue);
Visual BASIC VBdaqSetOption&(ByVal handle&, ByVal chan&, ByVal flags&, ByVal optionType&,

ByVal optionValue!)
Delphi daqSetOption(Handle:DaqHandleT; chan:DWORD; flags:DWORD;

optionType:DaqOptionType; optionValue:FLOAT)
Parameters
handle The handle to the device for which to set the option
chan The channel number on the device for which the option is to be set
flags Flags specifying the options to use.
optionType Specifies the type of option.
optionValue The value of the option to set
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqAdcExpSetChanOption,

Program References None
Used With All devices

daqSetOption allows the setting of options for a device’s channel/signal path configuration.
• The chan parameter specifies which channel the option applies to.
• The optionType specifies the type of option to apply to the channel.
• The optionValue parameter specifies the value of the option.
• The flags parameter specifies how the option is to be applied.

For more information on the options and their valid settings, refer to the Option Value and Option
Type tables.

daqSetTimeout
DLL Function daqSetTimeout(DaqHandleT handle, DWORD mSecTimeout);

C daqSetTimeout(DaqHandleT handle, DWORD mSecTimeout);

Visual BASIC VBdaqSetTimeout&(ByVal handle&, ByVal mSecTimeout&)

Delphi daqSetTimeout(handle:DaqHandleT; mSecTimeout:DWORD)

Parameters
handle Handle to the device for which the event time-out is to be set
mSecTimeout Specifies time-out (ms) for events
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqWaitForEvent, daqWaitForEvents

Program References None
Used With All devices

daqSetTimeout allows you to set the time-out for waiting on a single event or multiple events.
This function can be used in conjunction with the daqWaitForEvent and
daqWaitForEvents functions to specify a maximum amount of time to wait for the event(s) to
be satisfied.

The mSecTimeout parameter specifies the maximum amount of time (in milliseconds) to wait for
the event(s) to occur. If the event(s) do not occur within the specified time-out, the
daqWaitForEvent and/or daqWaitForEvents will return.

WaveBook Command Reference (Enhanced API) Chapter 12

12-36 WaveBook User’s Manual

daqTest
DLL Function daqTest(DaqHandleT handle, DaqTestCommand command, DWORD count, PBOOL

cmdAvailable, PDWORD result);
C daqTest(DaqHandleT handle, DaqTestCommand command, DWORD count, PBOOL

cmdAvailable, PDWORD result);
Visual BASIC VBdaqTest&(ByVal handle&, ByVal command&, ByVal count&, cmdAvailable&, result&)

Delphi [not supported]
Parameters
handle Handle to the device for which the test is to be performed
command Specifies the type of test to be run
count Optional parameter which specifies the length of the test
cmdAvailable Return Boolean indicating the availability of the test for the device
result Pointer to the test result field
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqOpen

Program References None
Used With All devices

daqTest allows you to test a Daq* device for specific functionality. Test types vary, and test
results are based on the type of test requested. Tests can only be performed on valid, opened Daq*
devices. If there are problems with the test, be sure to check the device for proper configuration and
that the device is powered-on and properly connected.

The command parameter specifies the test to run. There are two main types of tests: resource and
performance.

Resource tests are pass/fail and are useful in determining if the device has the appropriate resources
to function efficiently. If one or more of the resource tests fail, the Daq Configuration utility (found
in the operating system’s Control Panel) may be used to change the resource settings related to the
problem. Valid resource test types are defined as follows:
• DtsBaseAddressValid - This test will indicate if there is a problem communicating with

the device at its currently specified base address. A non-zero in the result parameter will
indicate a failed condition.

• DtsInterruptLevelValid - This test will indicate if there is a problem with performing
acquisitions using interrupts. A non-zero in the result parameter will indicate a failed
condition. If this is the case, the interrupts may not be properly configured (if the device is a
DaqBook, the LPT interrupts may not be enabled on the system) or an interrupt conflict exists
with another device.

• DtsDmaChannelValid - (DaqBoard only) This test will indicate if there is a problem with
performing acquisitions through DMA transfers with the currently configured DMA channel for
the device. A non-zero in the result parameter will indicate a failed condition. If this is the
case, DMA may not be enabled for the device or a conflict may exist with another device.

Performance tests measure the speed at which certain operations can be performed on the device.
In general, the performance test results indicate the maximum rate at which the operation can be
performed on the device. The valid performance test types are defined as follows:
• DtsAdcFifoInputSpeed - This test will determine the maximum rate at which analog

input can be acquired and transferred to system memory. Analog input performance results will
be returned in the result parameter with units of samples/second.

• DtsDacFifoOutputSpeed - (DaqBoard only) This test will determine the maximum rate
at which analog output data can be read from system memory and transferred to the device’s
DAC FIFO. Analog output performance results will be returned in the result parameter with
units of samples/second.

• DtsIOInputSpeed - This test will determine the maximum rate at which digital input can
be read from the device’s DIO port and transferred to system memory. Digital input
performance results will be returned in the result parameter with units of bytes/second.

• DtsIOOutputSpeed - This test will determine the maximum rate at which digital output can
be read from system memory and output to the device’s DIO port. Digital output performance
results will be returned in the result parameter with units of bytes/second.

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-37

The cmdAvailable parameter is a pointer to a Boolean value that indicates whether or not the
specified test is available for the device.

The count parameter can be used to indicate the duration or length of the test. For instance, a
resource test will be run count times; and if any one iteration of the test fails, it will indicate an
overall failure of the test. For a performance test, the count parameter will indicate the number of
times to run the test, and the test result will be an average of all the tests performed.

daqWaitForEvent
DLL Function daqWaitForEvent(DaqHandleT handle, DaqTransferEvent daqEvent);

C daqWaitForEvent(DaqHandleT handle, DaqTransferEvent daqEvent);

Visual BASIC VBdaqWaitForEvent&(ByVal handle&, ByVal daqEvent&)

Delphi daqWaitForEvent(handle:DaqHandleT; daqEvent:DaqTransferEvent)

Parameters
handle Handle of the device for which to wait of the specified event
daqEvent Specifies the event to wait on
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqWaitForEvents, daqSetTimout

Program References ADCEX1.C, DACEX1.C, DYN32ENH.C, DAQEX.FRM (VB), ADCEX.PAS (Delphi)
Used With All devices

daqWaitForEvent allows you to wait on a specific Daq* event to occur on the specified device.
This function will not return until the specified event has occurred or the wait has timed out—
whichever comes first. The event time-out can be set with the daqSetTimout function. See the
Transfer Event Definitions table for event definitions.

daqWaitForEvents
DLL Function daqWaitForEvents(DaqHandleT *handles, DaqTransferEvent *daqEvents,

DWORD eventCount, BOOL *eventSet, DaqWaitMode waitMode);
C daqWaitForEvents(DaqHandleT *handles, DaqTransferEvent *daqEvents,

DWORD eventCount, BOOL *eventSet, DaqWaitMode waitMode);
Visual BASIC VBdaqWaitForEvents&(handles&(), daqEvents&(), ByVal eventCount&, eventSet&(),

ByVal waitMode&)
Delphi daqWaitForEvents(handles:DaqHandlePT; daqEvents:DaqTransferEventP;

eventCount:DWORD; eventSet:PLONGBOOL; waitMode:DaqWaitMode)
Parameters
*handles Pointer to an array of handles which represent the list of device on which to wait for the events
*daqEvents Pointer to an array of events which represents the list of events to wait on
eventCount Number of defined events to wait on
*eventSet Pointer to an array of Booleans indicating if the events have been satisfied.
waitMode Specifies the mode for the wait
Returns DerrNoError - No error (also, refer to API Error Codes on page 12-42)
See Also daqWaitForEvent, daqSetTimeout

Program References None
Used With All devices

daqWaitForEvents allows you to wait on specific Daq* events to occur on the specified
devices. This function will wait on the specified events and will return based upon the criteria
selected with the waitMode parameter. A time-out for all events can be specified using the
daqSetTimeout command.

Events to wait on are specified by passing an array of event definitions in the events parameter.
The number of events is specified with the eventCount parameter. See the Transfer Event
Definitions table for events parameter definitions. Also see the Transfer Event Wait Mode
Definitions table for waitMode parameter definitions.

WaveBook Command Reference (Enhanced API) Chapter 12

12-38 WaveBook User’s Manual

API Reference Tables
These tables provide information for programming with the Daq* Application Programming Interface.
Information includes channel identification and error codes, as well as valid parameter values and
descriptions. The tables are organized as follows:

API Parameter Reference Tables
Table Title Sub-Title/Parameter/Description Page
Daq Device Property Definitions -
daqGetDeviceProperties

Identifies the format (DWORD, STRING, or FLOAT) for property parameters 12-39

Event-Handling Definitions Transfer Event Definitions - DaqTransferEvent
Transfer Event Wait Mode Definitions - DaqWaitMode

12-39

Hardware Information Definitions Hardware Information Selector Definitions - DaqHardwareInfo
Hardware Version Definitions - DaqHardwareVersion

12-39

ADC Trigger Source Definitions DaqAdcTriggerSource
DaqEnhTrigSensT

12-40

ADC Miscellaneous Definitions ADC Flag Definitions - DaqAdcFlag
Frequency vs Period - DaqAdcRateMode
ADC Acquisition Mode Definitions - DaqAdcAcqMode
ADC Transfer Mask Definitions - DaqAdcTransferMask
ADC Clock Source Definitions - DaqAdcClockSource
ADC File Open Mode Definitions - DaqAdcOpenMode
ADC Acquisition/Transfer Active Flag Definitions - DaqAdcActiveFlag
ADC Acquisition State - DaqAdcAcqState
ADC BufferTransfer Mask- DaqAdcBufferXferMask

12-40

WBK Card Definitions WBK Option Values - DaqChanOptionValue
WBK Channel Options - DaqAdcExpType
WBK Module Option-Types - DaqOptionType

12-41

General I/O Definitions I/O Operation Code Definitions - DaqIOOperationCode 12-41
DaqTest Command Definitions DaqTestCommand 12-41
Calibration Input Signal Sources DaqCalInputT

DaqCalTableTypeT
12-41

API Error Codes Identifies API errors by number and description 12-42

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-39

Daq Device Property Definitions - daqGetDeviceProperties
Property Description Format
deviceType Main Chassis Device Type Definition DWORD
basePortAddress Port Address (ISA Addr, LPT Port, etc) DWORD
dmaChannel DMA Channel (if applicable) DWORD
protocol Interface Protocol DWORD
alias Device Alias Name STRING
maxAdChannels Maximum A/D channels (with full expansion) DWORD
maxDaChannels Maximum D/A channels (with full expansion) DWORD
maxDigInputBits Maximum Dig. Inputs (with full expansion) DWORD
maxDigOutputBits Maximum Dig. Outputs (with full expansion) DWORD
maxCtrChannels Maximum Counter/Timers (with full expansion) DWORD
mainUnitAdChannels Maximum Main Unit A/D channels (no expansion) DWORD
mainUnitDaChannels Maximum Main Unit D/A channels (no expansion) DWORD
mainUnitDigInputBits Maximum Main Unit Digital Inputs (no expansion) DWORD
mainUnitDigOutputBits Maximum Main Unit Digital Outputs (no expansion) DWORD
mainUnitCtrChannels Maximum Main Unit Counter/Timer channels (no exp.) DWORD
adFifoSize A/D on-board FIFO Size DWORD
daFifoSize D/A on-board FIFO Size DWORD
adResolution Maximum A/D Converter Resolution DWORD
daResolution Maximum D/A Converter Resolution DWORD
adMinFreq Minimum A/D Conversion Scan Frequency (Hz) FLOAT
adMaxFreq Maximum A/D Conversion Scan Frequency (Hz) FLOAT
daMinFreq Minimum D/A Output Update Frequency (Hz) FLOAT
daMaxFreq Maximum D/A Output Update Frequency (Hz) FLOAT

Event-Handling Definitions

Transfer Event Definitions -
daqTransferEvent

Transfer Event Wait Mode Definitions -
daqWaitMode

DteAdcData 0 DwmNoWait 0
DteAdcDone 1 DwmWaitForAny 1
DteDacData 2 DwmWaitForAll 2
DteDacDone 3
DteIOData 4
DteIODone 5

Hardware Information Definitions

Hardware Information Selector
Definitions - daqHardwareInfo

Hardware Version Definitions -
daqHardwareVersion

Definition Value Definition Value
DhiHardwareVersion 0 DaqBook100 0
DhiProtocol 1 DaqBook112 1
DhiAdcBits 2 DaqBook120 2
DhiADmin 3 DaqBook200 3
DhiADmax 4 DaqBook216 4

DaqBoard100 5
DaqBoard112 6
DaqBoard200 7
DaqBoard216 8
Daq112 9
Daq216 10
WaveBook512 11
WaveBook516 12
TempBook66 13

WaveBook Command Reference (Enhanced API) Chapter 12

12-40 WaveBook User’s Manual

ADC Trigger Source Definitions
daqAdcTriggerSource DaqEnhTrigSensT

DatsImmediate 0 DetsRisingEdge 0
DatsSoftware 1 DetsFallingEdge 1
DatsAdcClock 2 DetsAboveLevel 2
DatsGatedAdcClock 3 DetsBelowLevel 3
DatsExternalTTL 4 DetsAfterRisingEdge 4
DatsHardwareAnalog 5 DetsAfterFallingEdge 5
DatsSoftwareAnalog 6 DetsAfterAboveLevel 6
DatsEnhancedTrig 7 DetsAfterBelowLevel 7

ADC Miscellaneous Definitions

ADC Flag Definitions - daqAdcFlag

Analog/High Speed Digital Flag Unsigned/Signed ADC Data Flag SSH Hold/Sample Flag - For Internal Use Only
DafAnalog 00h DafUnsigned 00h DafSSHSample 00h
DafHighSpeedDigita 01h DafSigned 04h DafSSHHold 10h

Unipolar/Bipolar Flag Single Ended/Differential Flag Clear or shift the least significant nibble - typically
used with 12-bit ADCs

DafUnipolar 00h DafSingleEnded 00h DafIgnoreLSNibble 00h
DafBipolar 02h DafDifferential 08h DafClearLSNibble 20h

DafShiftLSNibble 40h

Frequency vs Period -
daqAdcRateMode

ADC Acquisition Mode
Definitions - daqAdcAcqMode

ADC Transfer Mask Definitions -
daqAdcTransferMask

DarmPeriod 0 DaamNShot 0 DatmCycleOff 00h
DarmFrequency 1 DaamNShotRearm 1 DatmCycleOn 01h

DaamInfinitePost 2 DatmUpdateBlock 00h
DaamPrePost 3 DatmUpdateSingle 02h

DatmWait 00h
DatmReturn 04h
DatmUserBuf 00h
DatmDriverBuf 08h

ADC Clock Source Definitions
-daqAdcClockSource

ADC File Open Mode Definitions
- daqAdcOpenMode

ADC Acquisition/Transfer Active Flag
Definitions - daqAdcActiveFlag

DacsAdcClock 0 DaomAppendFile 0 DaafAcqActive 01h
DacsGatedAdcClock 1 DaomWriteFile 1 DaafAcqTriggered 02h
DacsTriggerSource 2 DaomCreateFile 2 DaafTransferActive 04h

ADC Acquisition State -
daqAdcAcqState

ADC Buffer Transfer Mask -
daqAdcBufferXferMask

DaasPreTrig 0 DabtmOldest 1
DaasPostTrig 1 DabtmNewest 2

DabtmWait 3
DabtmReturn 4

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-41

WBK Card Definitions

WBK Option Values - DaqChanOptionValue WBK Channel Options - DaqAdcExpType
WBK12 Filter-Type - WcotWbk12FilterType DoctWbk11 6
DcovWbk12FilterElliptic 0 DoctWbk12 7
DcovWbk12FilterLinear 1 DoctWbk13 8
WBK12 Filter-Mode - WcotWbk12FilterMode DmctWbk512 9
DcovWbk12FilterBypass 0 DmctWbk10 10
DcovWbk12FilterOn 1 DmctWbk14 11
WBK12 Anti-Aliasing Filter-Mode-WcotWbk12PreFilterMode DmctWbk15 12
DcovWbk12PreFilterDefault 0 DmctResponseDac *13
DcovWbk12PreFilterOff 1 *Response DAC on WaveBook
WBK13 Filter-Type - WcotWbk13FilterType
DcovWbk13FilterElliptic 0 WBK Module Option-Types - DaqOptionType
DcovWbk13FilterLinear 1 DcotWbk12FilterCutOff 0
WBK13 Filter-Mode - WcotWbk13FilterMode DcotWbk12FilterType 1
DcovWbk13FilterBypass 0 DcotWbk12FilterMode 2
DcovWbk13FilterOn 1 DcotWbk12PreFilterMode 3
WBK13 Anti-Aliasing Filter-Mode- WcotWbk13PreFilterMode DcotWbk13FilterCutOff 0
DcovWbk13PreFilterDefault 0 DcotWbk13FilterType 1
DcovWbk13PreFilterOff 1 DcotWbk13FilterMode 2
WBK14 Current-Source - WcotWbk14CurrentSrc DcotWbk13PreFilterMode 3
DcovWbk14CurrentSrcOff 0 DcotWbk14LowPassMode 0
DcovWbk14CurrentSrc2mA 1 DcotWbk14LowPassCutOff 1
DcovWbk14CurrentSrc4mA 2 DcotWbk14HighPassCutOff 2
WBK14 High-Pass Filter - WcotWbk14HighPassCutOff DcotWbk14CurrentSrc 3
DcovWbk14HighPass0_1Hz 0 DcotWbk14PreFilterMode 4
DcovWbk14HighPass10Hz 1 DmotWbk14ExcSrcWaveform 5
WBK14 Low-Pass Filter-Mode - WcotWbk14LowPassMode DmotWbk14ExcSrcFreq 6
DcovWbk14LowPassBypass 0 DmotWbk14ExcSrcAmplitude 7
DcovWbk14LowPassOn 1 DmotWbk14ExcSrcOffset 8

WBK-14 Low-Pass Filter-Mode - WcotWbk14PreFilterMode
DcovWbk14PreFilterDefault 0
DcovWbk14PreFilterOff 1
WBK14 Excitation-Source Waveform -
WmotWbk14ExcSrcWaveform

DmovWbk14ExcSrcRandom 0
DmovWbk14ExcSrcSine 1

Calibration Input Signal Sources
DaqCalInputT
DciNormal 0 External signal from device input connector(s)
DciCalGround 1 Internal calibration ground signal
DciCal5V 2 Internal 5 V calibration signal
DciCal500mV 3 Internal 500 mV calibration signal
DaqCalTableTypeT
DcttFactory 0 Factory calibration constants
DcttUser 1 User-defined calibration constants

General I/O Definitions

I/O Operation Code Definitions -
daqIOOperationCode
DioocReadByte 0
DioocWriteByte 1
DioocReadWord 2
DioocWriteWord 3
DioocReadDWord 4
DioocWriteDWord 5

daqTest Command Definitions
DaqTestCommand
DtstBaseAddressValid 0
DtstInterruptLevelValid 1
DtstDmaChannelValid 2
DtstAdcFifoInputSpeed 3
DtstDacFifoOutputSpeed 4
DtstIOInputSpeed 5
DtstIOOutputSpeed 6

WaveBook Command Reference (Enhanced API) Chapter 12

12-42 WaveBook User’s Manual

API Error Codes
Error
Name

Code #
hex - dec Description

DerrNoError 00h - 0 No error
DerrBadChannel 01h - 1 Specified LPT channel was out-of-range
DerrNotOnLine 02h - 2 Requested device is not online
DerrNoDaqbook 03h - 3 DaqBook is not on the requested channel
DerrBadAddress 04h - 4 Bad function address
DerrFIFOFull 05h - 5 FIFO Full detected, possible data corruption
DerrBadDma 06h - 6 Bad or illegal DMA channel or mode specified for device
DerrBadInterrupt 07h - 7 Bad or illegal INTERRUPT level specified for device
DerrDmaBusy 08h - 8 DMA is currently being used
DerrInvChan 10h - 16 Invalid analog input channel
DerrInvCount 11h - 17 Invalid count parameter
DerrInvTrigSource 12h - 18 Invalid trigger source parameter
DerrInvLevel 13h - 19 Invalid trigger level parameter
DerrInvGain 14h - 20 Invalid channel gain parameter
DerrInvDacVal 15h - 21 Invalid DAC output parameter
DerrInvExpCard 16h - 22 Invalid expansion card parameter
DerrInvPort 17h - 23 Invalid port parameter
DerrInvChip 18h - 24 Invalid chip parameter
DerrInvDigVal 19h - 25 Invalid digital output parameter
DerrInvBitNum 1Ah - 26 Invalid bit number parameter
DerrInvClock 1Bh - 27 Invalid clock parameter
DerrInvTod 1Ch - 28 Invalid time-of-day parameter
DerrInvCtrNum 1Dh - 29 Invalid counter number
DerrInvCntSource 1Eh - 30 Invalid counter source parameter
DerrInvCtrCmd 1Fh - 31 Invalid counter command parameter
DerrInvGateCtrl 20h - 32 Invalid gate control parameter
DerrInvOutputCtrl 21h - 33 Invalid output control parameter
DerrInvInterval 22h - 34 Invalid interval parameter
DerrTypeConflict 23h - 35 An integer was passed to a function requiring a character
DerrMultBackXfer 24h - 36 A second background transfer was requested
DerrInvDiv 25h - 37 Invalid Fout divisor
Temperature Conversion Errors
DerrTCE_TYPE 26h - 38 TC type out-of-range
DerrTCE_TRANGE 27h - 39 Temperature out-of-CJC-range
DerrTCE_VRANGE 28h - 40 Voltage out-of-TC-range
DerrTCE_PARAM 29h - 41 Unspecified parameter value error
DerrTCE_NOSETUP 2Ah - 42 dacTCConvert called before dacTCSetup
DaqBook
DerrNotCapable 2Bh - 43 Device is incapable of function
Background
DerrOverrun 2Ch - 44 A buffer overrun occurred
Zero and Cal Conversion Errors
DerrZCInvParam 2Dh - 45 Unspecified parameter value error
DerrZCNoSetup 2Eh - 46 dac…Convert called before dac…Setup
DerrInvCalFile 2Fh - 47 Cannot open the specified cal file
Environmental Errors
DerrMemLock 30h - 48 Cannot lock allocated memory from operating system
DerrMemHandle 31h - 49 Cannot get a memory handle from operating system
Pre-trigger acquisition Errors
DerrNoPreTActive 32h - 50 No pre-trigger configured
Daq FIFO Errors (DaqBoard only)
DerrInvDacChan 33h - 51 DAC channel does not exist
DerrInvDacParam 34h - 52 DAC parameter is invalid
DerrInvBuf 35h - 53 Buffer points to NULL or buffer size is zero
DerrMemAlloc 36h - 54 Could not allocate the needed memory
DerrUpdateRate 37h - 55 Could not achieve the specified update rate
DerrInvDacWave 38h - 56 Could not start waveforms because of missing or invalid parameters
DerrInvBackDac 39h - 57 Could not start waveforms with background transfers
DerrInvPredWave 3Ah - 58 Predefined waveform not supported
RTD Conversion Errors
DerrRtdValue 3Bh - 59 rtdValue out-of-range
DerrRtdNoSetup 3Ch - 60 rtdConvert called before rtdSetup

Chapter 12 WaveBook Command Reference (Enhanced API)

WaveBook User’s Manual 12-43

Error
Name

Code #
hex - dec Description

DerrRtdArraySize 3Dh - 61 Temperature array not large enough
DerrRtdParam 3Eh - 62 Incorrect RTD parameter
DerrInvBankType 3Fh - 63 Invalid bank-type specified
DerrBankBoundary 40h - 64 Simultaneous writes to DBK cards in different banks not allowed
DerrInvFreq 41h - 65 Invalid scan frequency specified
DerrNoDaq 42h - 66 No Daq112B/216B installed
DerrInvOptionType 43h - 67 Invalid option-type parameter
DerrInvOptionValue 44h - 68 Invalid option-value parameter
New API Error Codes
DerrTooManyHandles 60h - 96 No more handles available to open
DerrInvLockMask 61h - 97 Only a part of the resource is already locked, must be all or none
DerrAlreadyLocked 62h - 98 All or part of the resource was locked by another application
DerrAcqArmed 63h - 99 Operation not available while an acquisition is armed
DerrParamConflict 64h - 100 Each parameter is valid, but the combination is invalid
DerrInvMode 65h - 101 Invalid acquisition/wait/dac mode
DerrInvOpenMode 66h - 102 Invalid file-open mode
DerrFileOpenError 67h - 103 Unable to open file
DerrFileWriteError 68h - 104 Unable to write file
DerrFileReadError 69h - 105 Unable to read file
DerrInvClockSource 6Ah - 106 Invalid acquisition mode
DerrInvEvent 6Bh - 107 Invalid transfer event
DerrTimeout 6Ch - 108 Time-out on wait
DerrInitFailure 6Dh - 109 Unexpected result occurred while initializing the hardware
DerrBufTooSmall 6Eh - 110 Unexpected result occurred while initializing the hardware
DerrInvType 6Fh - 111 Invalid acquisition/wait/dac mode
DerrArraySize 70h - 112 Used as a catch all for arrays not large enough
DerrBadAlias 71h - 113 Invalid alias names for Vxd lookup
DerrInvCommand 72h - 114 Invalid command
DerrInvHandle 73h - 115 Invalid handle
DerrNoTransferActive 74h - 116 Transfer not active
DerrNoAcqActive 75h - 117 Acquisition not active
DerrInvOpstr 76h - 118 Invalid operation string used for enhanced triggering
DerrDspCommFailure 77h - 119 Device with DSP failed communication
DerrEepromCommFailure 78h - 120 Device with EEPROM failed communication
DerrInvEnhTrig 79h - 121 Device using enhanced trigger detected invalid trigger type
DerrInvCalConstant 7Ah - 122 User calibration constant out of range
DerrInvErrorCode 7Bh - 123 Invalid error code
DerrInvAdcRange 7Ch - 124 Invalid analog input voltage range parameter
DerrInvCalTableType 7Dh - 125 Invalid calibration table type
DerrInvCalInput 7Eh - 126 Invalid calibration input signal selection
DerrInvRawDataFormat 7Fh - 127 Invalid raw-data format selection
DerrNotImplemented 80h - 128 Feature/function not implemented yet
DerrInvDioDeviceType 81h - 129 Invalid digital I/O device type
DerrInvPostDataFormat 82h - 130 Invalid post-processing data format selection

WaveBook Command Reference (Enhanced API) Chapter 12

12-44 WaveBook User’s Manual

- Notes

Appendix

WaveBook User’s Manual A-1

Accessories and Specifications

Available Accessories
The WaveBook/512 includes the CA-140 cable and a TR-40U power supply (the TR-27 power supply
is optional).

The WBK10 includes the CA-128, & CA-129 cables and a TR-40U power supply (the TR-27 power
supply is optional).

Related accessories and options include:

CA-115 Daisy-chain power cable (DIN5, male-to-male) - 6 in.
CA-116 DIN5 to automobile cigarette lighter power cable - 8 ft
CA-128 Analog expansion signal cable, 12-inch, BNC-F to BNC-F
CA-129 Analog expansion control cable, 15-inch, HD15M to HD15F
CA-140 Cable, WaveBook/512 to PC
CA-150-1 1, BNC-M to BNC-M (CE-compliant cable)
CA-150-8 8, BNC-M to BNC-M (CE-compliant cable)

DBK30A Rechargeable battery module

HA-111 Fastener-panel handle

TR-40U Power supply: 90 to 264 VAC to 15 VDC @ 2.5 A
TR-27 Power supply: 115 VAC to 18 VDC @ 0.8 A

WBK10 8-channel Expansion Chassis
WBK11 Simultaneous Sample & Hold (SSH) Card
WBK12 Programmable Low-Pass Filter Card
WBK13 Programmable Low-Pass Filter Card with SSH
WBK14 Dynamic Signal Conditioning Module
WBK15 8-Slot 5B Signal Conditioning Module
WBK20 PCMCIA card & cable for laptop PC use
WBK21 ISA bus card for desktop PC use
WBK61/62 High-Voltage Adapter and Probes

Note: New WBK options regularly become available for new applications. Call your sales agent for
the availability of new WBK products. Also, many different kinds of 5B modules are available for the
WBK15.

Specifications
The following pages include specifications for the WaveBook/512 and related products (DBK30A,
WBK10, WBK11, WBK12, WBK13, WBK14, WBK15, WBK20, WBK21, and WBK61/62).

Accessories and Specifications Appendix

A-2 WaveBook User’s Manual

WaveBook/512 - Specifications
General
Power Consumption: 12 to 17 Watts typ
Input Power Range: 10 to 30 VDC
Operating Temperature: 0 to 50°C
Storage Temperature: 0 to 70°C
Humidity: 0 to 95% RH, non-condensing
Size: 220 mm wide × 285 mm long × 35 mm high

(8.5" × 11" × 1.375")
Weight: 1.5 kg (3.3 lb)

Analog Inputs
Channels: 8 differential, expandable up to 72

differential
Connector: BNC
Resolution: 12 bit
Input Ranges:
 Unipolar:

0 to +10 V (x1 gain)
0 to +5 V (x2 gain)
0 to +2 V (x5 gain)
0 to +1 V (x10 gain)

 Bipolar:
0 to ±5.0 V (x1 gain)
0 to ±2.5 V (x2 gain)
0 to ±1.0 V (x5 gain)
0 to ±0.5 V (x10 gain)

Accuracy: 0.025% FS max using external or factory
calibration

Sampling Rate: 1 MHz (1 µs)
Sequencer: 1 to 128 step channel/gain
Common mode rejection: >70 dB from 0 to 100 Hz
Maximum Overvoltage:

±30 VDC to Analog Common
±45 VDC between channels

Input Current:
50 nA typ
500 nA max

Input Impedance:
Single-ended: 5 MΩ in parallel with 30 pF
Differential: 10 MΩ in parallel with 30 pF

Triggering
Analog Trigger:

12 bit resolution from -5 V to +10 VDC
Trigger to A/D Latency: 300 nanoseconds

max
External TTL Trigger:

Logic Level Range: 0.8 V low/2.2 V high
Trigger to A/D Latency: 200 nanoseconds

max
Software Trigger:

Trigger to A/D Latency: 100 µs typ

Sequencer
Arbitrarily programmable for channel & gain; and for

unipolar/bipolar ranges
Depth: 128 location
Channel to channel rate: 1 µs/channel, fixed
Maximum repeat rate: 1 MHz
Minimum repeat rate: 100 seconds per scan
Expansion channel sample rate: Same as

on-board channels (1 µs/channel)
Pre-trigger duration: 0 - 100,000,000 scans
Post-trigger duration: 1 - 100,000,000 scans or

infinite

Digital I/O Connector
Connector: DB25F
Capacity: 8 input/output signals; 5 address signals;

read/write/enable signals
Sampling rate: 1 Mbyte/second max
Signal levels: TTL, 0.8 V low, 2.0 V high
Termination: 10 KΩ to +5 V
Power Connections: +5 V @ 250 mA max; ±15 V

@ 50 mA max

DBK30A - Specifications
Name/Function: Rechargeable Battery Module
Battery Type: Nickel-cadmium
Number of Battery Packs: 2
Battery Pack Configuration: 12 series-connected

sub-C cells
Output Voltage: 14.4 V or 28.8 V (depending on the

selected mode)
Output Fuses: 2 A

Battery Amp-Hours: 3.4 A-hr (1.7 A-hr/pack)
Charge Termination: Peak detection
Charge Time: 2 hours
Charging Voltage from Supplied AC Adapter: 22 to

26 VDC @ 2 A
AC Adapter Input: 95 to 265 VAC @ 47 to 63 Hz
Size: 221 mm × 285 mm × 35 mm
 (11" × 8-1/2" × 1-3/8")
Weight: 2.4 kg (6 lb)

Appendix Accessories and Specifications

WaveBook User’s Manual A-3

WBK10 - Specifications
Name/Function: WBK10 8-Channel Analog

Expansion Module
Number of Channels: 8 differential
Connector: BNC
Accuracy: ±0.025% FS
Offset: ±1 LSB max
Maximum Overvoltage: 30 VDC
Ranges: Unipolar/Bipolar operation is software

selectable via sequencer
 Unipolar: 0 to +10 V, 0 to +5 V, 0 to +2 V, 0 to +1 V
 Bipolar: -5 to +5 V, -2.5 to +2.5 V, -1 to +1 V, -0.5

to +0.5 V
Input Current: 50 nA typ, 500 nA max

Input Impedance
 Single-ended: 5 MΩ in parallel 30 pF
 Differential: 10 MΩ in parallel 30 pF
Gain Temperature Coefficient: 5 ppm/°C typ
Offset Temperature Coefficient: 12 uV/°C max
Sampling Rate: 1 MHz (1 µs)
Common mode rejection: >70 dB from 0 to 100 Hz
Power: 0.6 A max @ 15 VDC (7 to 12 Watts typ)
Operating Temperature: 0 to 50°C
Storage Temperature: 0 to 70°C
Humidity: 0 to 95% RH, non-condensing
Dimensions: 220 mm wide × 285 mm long × 35 mm

high (8.5” × 11” × 1.375”)
Weight: 1.3 kg (2.8 lb)

WBK11 - Specifications
Name/Function: WBK11 8-Channel Simultaneous

Sample-and-Hold Card
Number of Channels: 8
Connectors: Internal to the WaveBook/512 (36-pin

sockets mate with 36-pin connectors)
Accuracy: ±0.025% FS
Offset: ±1 LSB max
Aperture Uncertainty: 75 ps max
Voltage Droop: 0.1 mV/ms max

Maximum Signal Voltage: ±5.00 VDC (×1)
Input Voltage Ranges: Software programmable prior to a scan sequence;

expands WaveBook/512 ranges to:
 Unipolar: 0 to +10 V, 0 to +5 V, 0 to +2 V, 0 to +1 V, 0 to +0.5 V
 Bipolar: -5 to +5 V, -2.5 to +2.5 V, -1 to +1 V, -0.5 to +0.5 V, -0.05 to

+0.05 V
Programmable Gain Amplifier Gain Ranges: ×1, 2, 5, 10, 20, 50, 100
Weight: 0.14 kg (0.3 lb)

WBK12/13 - Specifications
Name/Function: WBK12, Programmable Low-Pass Filter Card
 WBK13, Programmable Low-Pass Filter Card With SSH
Number of Channels: 8
Connector: Internal to WaveBook/512 and WBK10 (two 36-pin sockets mate with 36-pin connectors)
Input Voltage Ranges: Software programmable prior to a scan sequence

Unipolar Bipolar
Voltage Range Gain Voltage Range Gain

0 to +0.1 V ×100 ±0.05 V ×100
0 to +0.2 V ×50 ±0.1 V ×50
0 to +0.5 V ×20 ±0.25 V ×20
0 to +1 V ×10 ±0.5 V ×10
0 to +2 V ×5 ±1 V ×5
0 to +5 V ×2 ±2.5 V ×2
0 to +10 V ×1 ±5 V ×1

Programmable Gain Amplifier Ranges: ×1, 2, 5, 10, 20, 50, and 100
Switched Capacitor Filter Cutoff Frequencies Range: 400 Hz to 100 kHz
Number of Cutoff Frequencies: 1024
Filter Grouping: 4 channels each in 2 programmable banks

Low-Pass Filter: Software selectable, 8-pole elliptic filter
Low-Pass Filter Type: Software selectable, elliptic or linear phase

Low-Pass Filter Frequency Cutoff Range: 100 kHz, 75 kHz, 60 kHz...400 Hz,
 bypass defined as Fc = 300 kHz/N where N = 3 to 750
Anti-Alias Frequencies: determined by software control
Accuracy: ±0.05% FS DC
Offset: ±1 LSB max
Aperture Uncertainty: 75 ps max
Voltage Droop: 1 mV/ms max (0.01 mV/ms typ)
Maximum Signal Voltage: ±5.00 VDC (×1)
THD: -65 dB (-70 dB typ)
Noise: 3 counts (RMS)
DC Offset: ±2.5 mV (2 LSB) max at any cutoff frequency
Number of Cutoff Frequencies Simultaneously Set: 2, one for each 4-channel bank of inputs
Weight: 0.14 kg (0.3 lb)

Accessories and Specifications Appendix

A-4 WaveBook User’s Manual

WBK14 - Specifications
Name/Function: WBK14, 8-Channel Dynamic Signal
Conditioning Module
Connectors: BNC connector, mates with expansion signal input

on the WaveBook/512; two 15-pin connectors, mate with
expansion signal control on the WaveBook/512; signals via 1
BNC per channel

Channels: 8
Gain Ranges: ×1, 2, 5, 10, 20, 50, 100, 200
Power Consumption: 15 Watts typical
Input Power Range: 10 to 30 VDC
Operating Temperature: 0°C to 50°C
Storage Temperature: 0°C to 70°C
Dimensions: 216 mm wide × 279 mm long × 35 mm high (8.5” ×
11” × 1.375”)
Weight: 1.32 kg (2.9 lb)
ICP Current Source:
 Output Impedance: > 1.0 MΩ @ 20 kHz
 Compliance: 27 V
 Current Levels: 2 & 4 mA
Coupling : AC
 10 Hz High-Pass Filter - Input Impedance: 590K
 0.1 Hz High-Pass Filter - Input Impedance: 10 MΩ
Input Ranges:
 ±5.0 V, ±2.5 V, ±1.0 V, ±500 mV, ±250 mV, ±100 mV, ±50 mV,
 ±25 mV

Anti-Aliasing Low-Pass Filter:
 Accuracy: ±0.5 dB at the passband center
 Frequency Span: 30 Hz to 100 kHz
 Frequency Settings: 300 kHz / N; N = 3,4,...10000
 Dynamic Range @ 1 kHz: 69 dB
 THD @ 1 kHz: 70 db
 Amplitude Matching: ± 0.1 dB
 Phase Matching: ± 2°
Excitation Source:
 Max. Output Voltage: ± 10 V
 Max. Output Current: 10 mA
 DC Output: ± 5 V
 Sine:
 Frequency: 20 Hz - 100 kHz
 Distortion: < 0.1%
 Amplitude: ± 5 V
 Steps: 256
 Random:
 Spectral Distribution: White, Band-limited
 Amplitude Distribution: Gaussian
 Bandwidth: 20 Hz - 100 kHz
 RMS level: Adjustable in binary steps
External Clock:
 Digital: TTL levels
 Sine: > 500 mV peak

WBK15 - Specifications
Name/Function: WBK15 Multi-Purpose Isolated Signal Conditioning Module
Connector: 2 BNC connectors, mate with expansion signal input on the WaveBook/512; two 15-pin connectors, mate with expansion

signal control on the WaveBook/512
Module Capacity: Eight 5B modules (optional)
Input Connections: Removable 4-terminal plugs
 (Weidmuller type BL4, PN 12593.6 or type BLTOP4, PN 13360.6)
Power Requirements: 10 to 30 VDC or 120 VAC with included adapter
 With 8 thermocouple-type modules: 12 VDC @ 0.25 A, 15 VDC @ 0.20 A, 18 VDC @ 0.2 A
 With 8 strain-gage-type modules: 12 VDC @ 0.95 A, 15 VDC @ 0.75 A, 18 VDC @ 0.65 A
Cold-Junction Sensor: Standard per channel
Shunt-Resistor Socket: One per channel for current loop inputs
Isolation
 Signal Inputs to System: 1500 VDC (600 VDC for CE compliance)
 Input Channel-to-Channel: 1500 VDC (600 VDC for CE compliance)
 Power Supply to System: 50 VDC
Dimensions: 221 mm × 285 mm × 36 mm (8.5” × 11” × 1.375”)
Weight: 1.8 kg (4 lb) with no modules installed

Appendix Accessories and Specifications

WaveBook User’s Manual A-5

WBK20 - Specifications
Name/Function: WBK20 PCMCIA/EPP Interface Card
Bus Interface: 8-bit PCMCIA Card Standard 2.1
Dimensions: 5 mm (PCMCIA Type II) card
Connector: DB25F
Transfer Rate: > 2 Mbytes/s
Cable: 2 ft (included)

WBK21 - Specifications
Name/Function: WBK21 ISA/EPP Interface Plug-in Board
Bus Interface: 16-bit ISA-bus interface
Transfer Rate: > 2.5 Mbytes/s
LPT Address: 378 or 278
LPT Interrupts: 5 or 7
Connector: DB25F
Serial-Port: high-speed 16C550 via DB9
Serial-Port Address: 3F8, 2F8, 3E8, or 2E8
Serial-Port Interrupt: 2, 3, 4, or 5
Connector: DB9M

WBK61/62 - Specifications
Name/Function:
 WBK61, High-Voltage Adapter with Probes, 200:1 Voltage Divider
 WBK62, High-Voltage Adapter with Probes, 20:1 Voltage Divider
Number of Channels: 1
Dimensions: 83 mm × 61 mm × 28 mm (3.25” × 2.375” × 1.1”)
Cables: 60” leads with detachable probe tips and alligator clips
Output Connector: BNC female
Voltage Divider:

WBK61: 200:1 fixed
WBK62: 20:1 fixed

Maximum Voltage
 WBK61: 1000 Vpeak (on either input reference to earth ground)
 WBK62: 100 Vpeak (on either input reference to earth ground)
Maximum Differential Voltage:

WBK61: 2000 Vpeak (if neither input exceeds 1000 Vp rating to earth
ground)
WBK62: 200 Vpeak (if neither input exceeds 100 Vp rating to earth
ground)

Frequency Characteristics: approximates a single-pole frequency
response
-3 dB Bandwidth: 200 kHz minimum

Voltage Ranges: * Note: The asterisk indicates the range is
obtained with the use of a WBK11, WBK12, or WBK13.
WBK61 Effective Ranges:

Unipolar: +1000V, 500V, 200V, 100V*, 40V*, 20V*
Bipolar: ±1000V, 500V, 200V, 100V, 50V*, 20V*, 10V*

WBK62 Effective Ranges: Note: For the WBK62 ranges
which are followed by an asterisk, the WaveBook/512 (or
WBK10) will exhibit superior performance with no WBK62
present.

Unipolar: +100V, 50V, 20V, 10V*, 4V*, 2V*
Bipolar: ±100V, 50V, 20V, 10V, 5V*, 2V*, 1V*

Measurement Errors:
The following values include total system error, i.e., they

include errors from WaveBook/512, WBK10, WBK11,
WBK12, and WBK13. The value for gain error does not
include offset error.
Gain Error:

0.1% FS (unipolar)
0.2% FS (bipolar)

Offset Error:
0.1% FS (unipolar)
0.2% FS (bipolar)

Accessories and Specifications Appendix

A-6 WaveBook User’s Manual

- Notes

WARRANTY/DISCLAIMER
OMEGA ENGINEERING, INC. warrants this unit to be free of defects in materials and workmanship for a
period of 13 months13 months from date of purchase. OMEGA Warranty adds an additional one (1) month grace
period to the normal one (1) year product warrantyone (1) year product warranty to cover handling and shipping time. This
ensures that OMEGA's customers receive maximum coverage on each product.
If the unit should malfunction, it must be returned to the factory for evaluation. OMEGA's Customer
Service Department will issue an Authorized Return (AR) number immediately upon phone or written
request. Upon examination by OMEGA, if the unit is found to be defective it will be repaired or replaced at
no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser,
including but not limited to mishandling, improper interfacing, operation outside of design limits,
improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of
having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or
current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating
conditions outside of OMEGA's control. Components which wear are not warranted, including but not
limited to contact points, fuses, and triacs.
OMEGA is pleased to offer suggestions on the use of its various products. However,OMEGA is pleased to offer suggestions on the use of its various products. However,
OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for anyOMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any
damages that result from the use of its products in accordance with information provided bydamages that result from the use of its products in accordance with information provided by
OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will beOMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be
as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES ORas specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR
REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OFREPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF
TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITYTITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OFAND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF
LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability ofLIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of
OMEGA with respect to this order, whether based on contract, warranty, negligence,OMEGA with respect to this order, whether based on contract, warranty, negligence,
indemnification, strict liability or otherwise, shall not exceed the purchase price of theindemnification, strict liability or otherwise, shall not exceed the purchase price of the
component upon which liability is based. In no event shall OMEGA be liable forcomponent upon which liability is based. In no event shall OMEGA be liable for
consequential, incidental or special damages.consequential, incidental or special damages.
CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic
Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical
applications or used on humans. Should any Product(s) be used in or with any nuclear installation or
activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility
as set forth in our basic WARRANTY/DISCLAIMER language, and additionally, purchaser will indemnify
OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the
Product(s) in such a manner.

RETURN REQUESTS/INQUIRIES
Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE
RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN
(AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID
PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return
package and on any correspondence.
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent
breakage in transit.
FOR WARRANTYWARRANTY RETURNS, please have the
following information available BEFORE
contacting OMEGA:
1. P.O. number under which the product was

PURCHASED,
2. Model and serial number of the product under

warranty, and
3. Repair instructions and/or specific problems

relative to the product.

FOR NON-WARRANTYNON-WARRANTY REPAIRS, consult OMEGA
for current repair charges. Have the following
information available BEFORE contacting OMEGA:
1. P.O. number to cover the COST

of the repair,
2. Model and serial number of the product, and
3. Repair instructions and/or specific problems

relative to the product.

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords
our customers the latest in technology and engineering.
OMEGA is a registered trademark of OMEGA ENGINEERING, INC.
© Copyright 1996 OMEGA ENGINEERING, INC. All rights reserved. This document may not be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior
written consent of OMEGA ENGINEERING, INC.

TEMPERATURE
þ Thermocouple, RTD & Thermistor Probes, Connectors, Panels & Assemblies
þ Wire: Thermocouple, RTD & Thermistor
þ Calibrators & Ice Point References
þ Recorders, Controllers & Process Monitors
þ Infrared Pyrometers

PRESSURE, STRAIN AND FORCE
þ Transducers & Strain Gauges
þ Load Cells & Pressure Gauges
þ Displacement Transducers
þ Instrumentation & Accessories

FLOW/LEVEL
þ Rotameters, Gas Mass Flowmeters & Flow Computers
þ Air Velocity Indicators
þ Turbine/Paddlewheel Systems
þ Totalizers & Batch Controllers

pH/CONDUCTIVITY
þ pH Electrodes, Testers & Accessories
þ Benchtop/Laboratory Meters
þ Controllers, Calibrators, Simulators & Pumps
þ Industrial pH & Conductivity Equipment

DATA ACQUISITION
þ Data Acquisition & Engineering Software
þ Communications-Based Acquisition Systems
þ Plug-in Cards for Apple, IBM & Compatibles
þ Datalogging Systems
þ Recorders, Printers & Plotters

HEATERS
þ Heating Cable
þ Cartridge & Strip Heaters
þ Immersion & Band Heaters
þ Flexible Heaters
þ Laboratory Heaters

ENVIRONMENTAL
MONITORING AND CONTROL
þ Metering & Control Instrumentation
þ Refractometers
þ Pumps & Tubing
þ Air, Soil & Water Monitors
þ Industrial Water & Wastewater Treatment
þ pH, Conductivity & Dissolved Oxygen Instruments

M2277

